本帖最后由 GJM 于 2009-12-5 21:43 编辑 # J1 n6 r* u& p1 V& [4 @# a
0 F) w+ z/ }3 \3 ~
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
5 Z J9 u" S. b! D: S+ q; v' U1 I0 _1 G: `
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
- E2 v& O* k( ^7 T$ L# {, A$ w2 Y/ x& m( ~' q
--------------------------------------------; X4 u1 a% Y* D4 [0 G9 T
begin P_something arriving) \8 }' D# \2 K4 D# ]8 J
move into Q_wait7 e4 j6 w1 f0 m# H: B7 P5 u
move into nextof(Q_mA,Q_mB,Q_mC)# N& X/ [# l& A) I
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
, d e, i2 T9 n* i" Q send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)- Q: {% h9 i! M
send to die/ ~* l# H$ U, Y
end
$ N# c3 w5 r" d6 j. t
7 s4 g7 O w+ N0 kbegin P_mA_down arriving
5 W4 O4 @( T( o& L2 v) t while 1=1 do 1 A+ d% U) ~# O4 T# M' @
begin
2 [) M! k# d# I6 |1 h wait for e 110 min, k5 ?$ b3 I1 Y* N1 P/ O# [
take down R_mA! i/ p' ]( @ `1 D _" p2 {
wait for e 5 min
4 W+ ^/ }4 d( P* m% d bring up R_mA" o0 K5 ~- Y' S* D6 ]
end
7 H/ S9 i- h$ Y6 B: Xend5 _, V- s& R/ `& ~( d0 B: _
- S j4 [/ w6 O6 ?0 D6 l" F4 k" {0 ebegin P_mB_down arriving1 s ~% y7 M2 t9 P
while 1=1 do) O( w1 v+ [% {* u# ?9 H4 D! U% m8 m+ ~
begin0 p8 p4 i4 w1 q" g3 Y3 T3 u
wait for e 170 min
6 V' B/ C4 U5 r2 a d take down R_mB1 t: y. j O# l/ Y7 m2 O
wait for e 10 min" K$ b. q4 c- K) m" I
bring up R_mB
! f9 P' u$ M! S$ c8 C8 g: v end
3 b8 R# q# n# |1 \end
0 h! g7 o$ X( |3 d- N7 h7 H9 ~5 G# o4 a
, s/ J' |# n; ?, `1 pbegin P_mC_down arriving
5 q* a% ?% T* {: ]. ^- x while 1=1 do % O+ C7 R9 ^* k* W- t
begin- D$ w& c0 v/ R
wait for e 230 min q4 U: m4 q9 P! e
take down R_mC
( r# u; _& D* _/ l2 {% D5 z wait for e 10 min5 O' l K$ M; j
bring up R_mC
. p6 A8 ?3 o: \ end2 D! G7 p1 N: ]0 _1 {0 n
end
, U; ~1 W% r8 ], s+ g 4 X% |4 J$ b2 L& Z6 [
begin P_mA_clean arriving
6 v" g- K" w8 ~. k' J t* | while 1=1 do
0 t/ ?' a! u" }1 ^: l0 R# X0 u8 ? begin
9 }- Y# v0 t' I4 E; J$ q7 z9 u& T wait for 90 min
& ~4 V0 z; A. t. h- j2 C take down R_mA6 n0 }: M/ J- j' d! [! x
wait for 5 min
1 l7 r7 D6 c: l* ~/ v) V bring up R_mA
6 L. w& Y+ @+ s2 \2 f$ l end
+ T" o# D! _* z* h' H( a/ t. n& ~' ^end
8 H, o& G N. |$ G! ` ( Y* S# S/ B( p7 ^" Y' y( j/ Y
begin P_mB_clean arriving8 f. W3 D% O9 h3 u1 [
while 1=1 do c( q, I9 m6 w$ N5 ]% D; O1 s
begin) I% F0 w* `& @' h: v. ]
wait for 90 min1 z3 @4 D: ~$ e; j$ F
take down R_mB
`$ q+ E/ I4 i/ r- o' u8 [ wait for 5 min
& z- I/ ~- Z2 f5 m% P7 i1 e. H bring up R_mB0 n" @2 E! r7 O& M' |
end0 ~) S6 J" g0 Q; d
end
% x# R0 d: h f/ x: u 9 G9 x0 O+ v8 n' J L8 m- U
begin P_mC_clean arriving t. D- p7 [; q+ k
while 1=1 do! r! \! Q1 K# h. B" [' k4 j6 ?% p& v5 g
begin
r5 c# W' O) f; a+ P, [ wait for 90 min
# A) |& |3 U/ ^ take down R_mC) q2 Z7 C& I E7 @) R3 W
wait for 10 min: O& z# {/ H% P! w& _
bring up R_mC x0 F& h% M8 v! Y9 W9 i
end+ H/ V$ V! t9 t7 @6 z/ y2 W
end5 a2 N1 _- H* h2 u# U& Y
----------------------------------------
) S. O+ c2 W4 N1 r6 d! ~5 P1 S) C3 ?" z
' `3 i. U* S. Z( }( v0 wExercise 5.9
4 i* n, N- F) b4 U
* L( ]. B1 d1 n( U% E
6 K9 I1 s+ B* I& K2 @. O+ Y) L& iCreate a new model to simulate the following system:7 U: i0 T" U2 i' V( M/ ^
Loads are created with an interarrival time that is exponentially 1 c) V6 u8 \4 o3 d1 \. o
distributed with a mean of 20 minutes. Loads wait in an infinite-
9 G# U/ W; ~/ m6 I; ^capacity queue to be processed by one of three single-capacity, , N( M7 g/ Q% A
arrayed machines. Each machine has its own single-capacity queue : }# V$ `+ a' d6 G6 X/ s
where loads are processed. Waiting loads move into one of the three ' [( p& D4 j/ P
queues in round-robin order. Each machine has a normally ) i4 S6 Q2 R! Q
distributed processing time with a mean of 48 minutes and a standard
2 n2 K O. G0 ?' O3 ^" Odeviation of 5 minutes.
: ~' H% V- o* D m0 ~7 k; z! k& KThe three machines were purchased at different times and have
2 o# f6 i0 B$ f' Z' V% I) ~; edifferent failure rates. The failure and repair times are exponentially
+ G2 ?; y( t, P4 `$ [& a* Ldistributed with means as shown in the following table: 1 d" l! u$ x+ b2 @6 u
Note The solution for this assignment is required to complete $ r; M A. m f$ A3 o
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 2 c! r& J& H2 S; { m2 q1 \
your model.
" e# d' I G+ D1 G8 j( |8 p, g9 j- [) t2 ]
MachineMean time to failMean time to repair
7 B T. J4 ?4 ]3 @# N# ?: IA110 minutes 5 minutes# ~7 A$ @# X7 ]5 ?( i+ S1 ?' I" p
B 170 minutes 10 minutes
" \$ t. c# L6 D! j/ Z5 L4 p, qC230 minutes 10 minutes% t* u4 L z9 O! ^5 U; @* D/ W o
! {5 G; N; W: CThe machines also must be cleaned according to the following ) O& Y6 K: S# U' J2 B3 Q
schedule. All times are constant:
9 s" C- J) M( l2 ~2 U0 h
& q1 S" c1 K. O' Z2 KMachineTime between cleanings Time to clean: b% O; y$ @" ]
A90 minutes 5 minutes
9 s% s, l' |& U |B 90 minutes 5 minutes
( N- l' x# c8 q4 lC90 minutes 10 minutes: [" g6 D, g2 b; L& E4 _+ R
5 P; ^' V$ E, C1 EPlace the graphics for the queues and the resources.
, f: h& J; r' o. RRun the simulation for 100 days.
9 \$ \+ p" o) dDefine all failure and cleaning times using logic (rather than resource # G) ]0 W t- k. h0 _- W
cycles). Answer the following questions:: X! C. R! @8 j- s: b+ F& U R
a.What was the average number of loads in the waiting queue?
7 h9 S) K5 Y: i- a% fb.What were the current and average number of loads in Space? $ T7 W# T5 j0 f! K8 f* l# g) N) B
How do you explain these values? 0 H; F$ }2 k! S3 l8 g6 H0 p1 q
|