本帖最后由 GJM 于 2009-12-5 21:43 编辑
8 E, i S8 J' O# F5 p5 v) j5 e1 Q* T9 M- z, b: s1 C
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
5 a& Z/ z+ t. ~) \5 s- F& K; i% u% p" h7 Y
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
K7 {" A/ l8 \& {4 S; J7 X# h# ]; ^) n: h1 a+ K
--------------------------------------------( {* M5 y) u3 z3 Q T8 _; K3 W L
begin P_something arriving
+ I+ |1 C2 h5 p/ U; n [0 F move into Q_wait% Q2 o* J, C+ I6 o( l
move into nextof(Q_mA,Q_mB,Q_mC)
4 y1 _8 u A# k3 B( y) N use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min: Q) @' }$ _- X. j B
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean) r8 U2 n1 k1 X( P
send to die
+ H% \1 ^6 H O! ~end
8 ~4 \+ b) o7 g9 }
0 H8 X5 x( o) m6 N5 ebegin P_mA_down arriving
5 [" z# H; J2 o% o3 }1 G Q- R. ?' t while 1=1 do
, @; e g1 ]3 v. A6 k begin0 W5 U8 Z, u2 Q4 S
wait for e 110 min
4 V- E% w! Z c1 e8 D. y" m. v take down R_mA
% ^7 }! |7 d1 o) H& | wait for e 5 min
- m w) R5 f# f e+ _ bring up R_mA
& \5 }! R; ^( w& n( o( i* M; I end
6 Q9 b! {! [/ {+ @9 D. Nend
, r f! ? y4 E' `9 w( P. ] ; B! H* p7 r, }2 Y6 A1 ~5 a& h$ U
begin P_mB_down arriving
5 A( u8 o3 O" z* q while 1=1 do) e( J; \6 z. t) A; b% k
begin) b; V) I! m8 P- C
wait for e 170 min% j4 P+ \; }0 f3 ?8 D. N. [
take down R_mB- a% g7 G9 F2 ]8 Q" \; N
wait for e 10 min
I9 D; [. o, v# J+ N' L bring up R_mB
" R. ^( f7 O0 n+ s end- a" N3 Y) ~" W% f$ I
end
5 ^# Y3 l7 A" C4 T# \' H3 O
( g9 ^: G5 U% ]' E$ [2 ~begin P_mC_down arriving
+ F ?7 J& J8 A( {: n while 1=1 do / `/ ~% l0 G( P5 U
begin
' k" i( H2 s0 k8 S1 U4 n8 N! O wait for e 230 min
/ e2 E; F S9 M0 ~7 G take down R_mC
' o+ e* P l, |, s3 p/ O x) w1 S wait for e 10 min" M. K& D }8 Q0 U. C& s; \
bring up R_mC
/ `8 g( l; K6 T! q end
3 [7 V! d+ g7 I& ?" aend
3 M, b! M0 F$ u1 J
6 L2 p- E7 m! n/ n+ l6 fbegin P_mA_clean arriving
/ s9 K9 O+ l7 s% y2 T, [ while 1=1 do
$ c4 B! M: T) [ O* ] begin5 X; i8 f& g+ n$ z3 P3 f- b; U, j
wait for 90 min
* q1 _$ j Z' O' M: H6 p take down R_mA
7 q% e( j. E9 V9 o) k4 Z' } wait for 5 min
. I% ~2 g0 k3 k+ {: Q5 @. } bring up R_mA
& U9 o# B: f' e5 F& S end! j, Y7 \, F1 [+ @& i1 r
end6 X3 ?8 i) p% r G1 c) K; U$ Y
. X2 l+ p2 j8 Y% Y
begin P_mB_clean arriving( z( L1 @$ m |0 o
while 1=1 do+ X) k7 _3 |: ?6 |
begin
' n; b2 g, @% K, \ wait for 90 min, o; @1 A! Y( w1 G1 j
take down R_mB* h3 j2 M$ a" S+ p. |4 A
wait for 5 min
- J* m9 L8 I) D# r) l7 h bring up R_mB
! ?/ v5 }5 M5 ~) b end
* {7 H/ Q! X8 \' Tend% ` E: R' f- e
' H9 h9 c5 T- K
begin P_mC_clean arriving
# W* K8 C3 e+ B# a while 1=1 do7 j- j7 u& [& ^( [- f9 l
begin: @$ h% `( n! `0 I* _# u
wait for 90 min+ Q: Z, }" A* f: N4 B6 g
take down R_mC
2 ^+ T- v; P6 x wait for 10 min
: b+ v* c9 r" y/ ^4 a bring up R_mC0 u% q$ I! n# O. b0 x! ~
end
! }7 A4 g$ Q' ~( m5 {" Aend( z) X, G. c6 {
----------------------------------------$ S2 E% P0 A% N2 L1 c4 B
) U) {( A1 I; W9 ?" `( N
Exercise 5.94 t5 f$ g _7 _# p5 V% S- L
( Y4 L- s0 r% h6 y7 s0 |5 q" e6 i: v9 T+ |* S2 h
Create a new model to simulate the following system:+ r1 x: y3 L3 ?3 {' Z
Loads are created with an interarrival time that is exponentially 2 G7 S0 P* [2 ^2 L+ w
distributed with a mean of 20 minutes. Loads wait in an infinite-, m4 \# `. z/ r% S& X3 c
capacity queue to be processed by one of three single-capacity,
" J3 `, V8 x' r/ {arrayed machines. Each machine has its own single-capacity queue 5 i6 a# T, \/ q- A* b1 c8 B3 ^
where loads are processed. Waiting loads move into one of the three % o; D3 d% ?" p+ k! x
queues in round-robin order. Each machine has a normally
% @8 S) [4 d! n# ?* X1 jdistributed processing time with a mean of 48 minutes and a standard
% e( s a C. |; _2 ]) |/ Z) ]) i4 ?deviation of 5 minutes.
- l7 g) V1 K4 F6 V5 E9 yThe three machines were purchased at different times and have 0 R6 u7 ~. F6 K4 `/ R
different failure rates. The failure and repair times are exponentially ( F# k5 h+ y2 S! V* @9 c7 S
distributed with means as shown in the following table:
% W% n# |) w) K v' Y9 v( A# g+ XNote The solution for this assignment is required to complete : T4 G8 O( j4 \
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
8 W: i" g* Y1 ^your model. 4 D) t" _( t3 k& F& R
8 T5 ^* |: Z# D. dMachineMean time to failMean time to repair7 S7 }2 i! n) y$ }/ ]
A110 minutes 5 minutes" H& V9 R, }" R6 l# q5 y, S5 F
B 170 minutes 10 minutes9 O/ F$ u. b1 g2 d2 h, x
C230 minutes 10 minutes
; {4 d3 O6 {2 O6 ?% \# B+ Q0 i: Q& E4 F9 s; a( o* f; W# K x8 D1 |- ]
The machines also must be cleaned according to the following 7 j+ D( }$ w, _: x
schedule. All times are constant: 3 {5 K+ K! I& Y
3 E" m' K( P4 G0 D" H/ o
MachineTime between cleanings Time to clean
0 Z' @# T8 P0 K. SA90 minutes 5 minutes7 V' X! [' W' N2 q0 h# X- d3 ~
B 90 minutes 5 minutes8 g+ _% u' y" I1 i$ z. ?
C90 minutes 10 minutes
) _/ I% Q8 B( `& r1 v- K5 \4 Q8 B$ E4 f! _( z2 ~
Place the graphics for the queues and the resources.
4 U1 f' O/ }. m) v9 iRun the simulation for 100 days.3 j: V6 h4 C8 k3 _' q/ ?( o
Define all failure and cleaning times using logic (rather than resource % _/ h, ?) n2 I9 l
cycles). Answer the following questions:
2 d5 E" m. o# L8 `2 c- P( _a.What was the average number of loads in the waiting queue?
5 j* r1 ]2 C8 w1 N& k( ]b.What were the current and average number of loads in Space? 0 L. \6 Q3 K8 C
How do you explain these values? $ J) [$ { ?: ]# M7 V; ^ }
|