本帖最后由 GJM 于 2009-12-5 21:43 编辑
6 @# w: o( E" B( L7 A5 C/ F6 c1 m; T/ G, ]* M+ t' s. G& _
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
& i( q% B9 ~! x, r: W2 I6 i
* D/ \ j2 K1 b Y+ i不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!1 o4 \' Y% E& v# R3 g5 |
- y4 [' g2 L1 z0 v- u
--------------------------------------------
- x, B; }2 r+ Rbegin P_something arriving
) o1 P6 ]" ~. h) V move into Q_wait
4 g# p* ]/ ?; Y' p! ^( R move into nextof(Q_mA,Q_mB,Q_mC)
# n. }1 @% [+ E1 w use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min4 n2 v* G% K9 i9 H- x* O6 p
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
5 n4 B4 }8 R' v4 I; ]! s send to die0 j5 J/ I( Q0 \! S- i0 a' n/ {# @
end$ Z% w; @( n n
H+ I/ W* v& N1 Q4 U
begin P_mA_down arriving8 I- q; z' i; h# |% {6 S
while 1=1 do
8 C, Y& p# R, B/ h2 O begin
3 L3 W/ P5 e) J, q, W3 }' D wait for e 110 min- o0 d. o9 t; X1 Q
take down R_mA3 g- n1 {& Z. `! y4 R* l
wait for e 5 min
7 h4 I$ _- n! S) P3 E" D, ^# D5 X7 F bring up R_mA' o: `" O E3 v7 c& ~
end
: |: |; k$ k5 I8 q9 l) ^end
3 o/ `* e, H3 a B I + h8 @5 M% |3 Q! M3 b% {
begin P_mB_down arriving, ?! a9 J6 w1 l+ N( ^8 q0 T; q
while 1=1 do: ?: X# ^, [6 }
begin
' f% d# S; q! J$ _ wait for e 170 min( y; J1 n" i# R2 G! o1 r6 w
take down R_mB$ ~& t7 M: [7 R0 G! ?
wait for e 10 min8 m) V. V) q- v9 e" }2 G# t& B
bring up R_mB
/ R# P3 [4 t+ x. p$ w7 V2 T# H end
0 c- K9 c* B+ O3 ]& z* Zend
3 o6 I9 ]# ^# V/ y : g* Y# F: b4 W( e
begin P_mC_down arriving# T8 v2 b2 P* h. l
while 1=1 do
6 P% ?8 d7 n) J( q1 W begin
, C0 C7 E5 @3 X& Y( f; e( ?) N( G wait for e 230 min: y% C5 x' C2 _& x. Y2 Z
take down R_mC, ^! v M3 d( n! h* e! e9 _, C9 M5 H
wait for e 10 min4 n) M8 S' A) a( C3 d
bring up R_mC
0 J+ E" R7 u' k4 D3 O C5 H end+ A" s5 A" k z, c* b
end# a; L Z0 o! j B
1 G: D( [8 c X9 bbegin P_mA_clean arriving
; b9 }- E5 K5 i( N$ s6 Y while 1=1 do: @9 ~0 z% ~1 a9 h: v
begin! n/ @0 l3 U/ V; {
wait for 90 min
5 q) u$ R _8 a4 k take down R_mA
/ U6 N/ I3 @7 q) W wait for 5 min
7 d4 O& i$ V6 `, g0 ?4 B" Z' O bring up R_mA
' B& E' D0 K- l$ F' h9 { end+ U$ d% Y0 C# v2 u4 b n
end* U a: r( v9 {/ {
1 X( c0 C0 @0 \7 p7 t3 y/ Ebegin P_mB_clean arriving
0 g, S- c: K" S: S while 1=1 do+ x# |: L/ [- _
begin
* ~1 ~$ i- ?+ I! @ wait for 90 min. M: i+ q7 @/ y. i
take down R_mB9 o4 B$ [) s# t, }: t( X
wait for 5 min
$ Y7 T0 S J# e o0 f3 i bring up R_mB
0 N9 d Y0 z7 m& }/ g k end! d( j0 R. @6 q2 Q
end
. C% ?& b' Q/ J' O6 \5 F7 s
: z1 D1 r+ x0 q4 i) Z. S, ]begin P_mC_clean arriving& ]+ g! z u( q" I4 B5 A' U
while 1=1 do& z, x# g! B! c1 s2 q
begin
4 M* ~4 x4 j2 |9 h+ S9 X wait for 90 min0 h } i T8 @* ?" a
take down R_mC
8 F3 s$ q5 j. l9 [* ]8 n7 ^: X wait for 10 min& E) h, H* N' x- }/ `
bring up R_mC8 V3 o4 j9 V. Q- Q7 s
end6 A" I$ i3 g$ G2 S5 K! C
end' E$ i# `5 g! ^; Q
----------------------------------------, ~. ~+ f0 s/ c6 t# e3 L" u7 Q
: O3 d0 E( }+ |Exercise 5.9
5 G/ V2 R, T4 C9 V8 ^/ Y
& E+ y, x7 ^; J3 M1 e' l6 Z$ l$ [3 u
Create a new model to simulate the following system:
' J4 I: R8 J7 x4 |* K5 q) t1 Q" |Loads are created with an interarrival time that is exponentially 2 L4 S; y0 u0 ] I8 q2 z2 ?3 b
distributed with a mean of 20 minutes. Loads wait in an infinite-0 x. S# ?1 g+ S
capacity queue to be processed by one of three single-capacity, v5 y& O6 e3 c' e+ z( C. N7 @; b+ X
arrayed machines. Each machine has its own single-capacity queue 0 _7 M' D1 H/ B5 w9 H. y9 o
where loads are processed. Waiting loads move into one of the three
/ L0 Y w8 V3 L+ ]4 W v& p$ Dqueues in round-robin order. Each machine has a normally
3 {0 q; g% F+ K, B! ydistributed processing time with a mean of 48 minutes and a standard
% B5 B) P, b6 B! q0 S, Ddeviation of 5 minutes.0 N) v5 g! v, Q& u8 V6 v
The three machines were purchased at different times and have & a/ T. B* M' _" I! U7 p* J( y u
different failure rates. The failure and repair times are exponentially ! b3 x# q; q/ r1 q7 `6 A
distributed with means as shown in the following table:
- P2 b' }) X4 i! k1 p. [Note The solution for this assignment is required to complete
% s! g1 _ n" s$ U6 ]0 a7 vexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
b/ A. M7 j2 ]7 C qyour model.
' p! F4 Q# V$ ^( P$ @
0 F0 n4 G( ]/ o' v+ Y) ]" z$ |MachineMean time to failMean time to repair
0 S* y7 e5 h4 S- [. u! tA110 minutes 5 minutes
4 P" a+ l0 P( u, k9 i; BB 170 minutes 10 minutes
; t r( _6 n$ q0 kC230 minutes 10 minutes
& X) p0 W0 r/ G2 g" I v" T( J9 T, i! [0 K( f
The machines also must be cleaned according to the following 3 ^2 ]: h4 d" V- P6 O# L4 s
schedule. All times are constant:
1 a) x. }7 D( i; m! |1 G0 g2 s/ e* h) A C
MachineTime between cleanings Time to clean
: z) P% K3 Z2 \A90 minutes 5 minutes6 u. Y# a7 U7 s$ d
B 90 minutes 5 minutes8 z: k# w4 j) \) k! j
C90 minutes 10 minutes. o' d) f! @/ b/ r* g+ r Y- ?
, \6 p# P8 s5 d0 t* z0 o9 m1 H1 ePlace the graphics for the queues and the resources.
; f* f1 l d+ L% G1 _3 oRun the simulation for 100 days.6 M3 E; `1 Q* }6 P
Define all failure and cleaning times using logic (rather than resource 6 J( K! t9 b0 b. L3 d
cycles). Answer the following questions:
" B7 t4 U# E- J: W: z- [) [a.What was the average number of loads in the waiting queue?2 V/ Q8 G! H5 v% c/ I9 c
b.What were the current and average number of loads in Space?
) q" B6 E }% w+ d9 ZHow do you explain these values? - c! P! u/ E7 S) d* U: I/ @3 K
|