设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7162|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
# i: q+ M$ ~$ dglobals8 z3 Z+ r3 c" i3 ]2 R: A# M* J) l
[4 g1 h' C1 E& x
  max-grain    ; V1 @3 t6 Z" w% v' j* Z" g% F
& X$ _  {- C) t; \
]
# c" |3 e0 v/ C# L3 C" R6 m8 n/ W5 K2 P: M
patches-own  Z: l6 @5 U& z. y0 s4 E& k
[
4 S# G5 r, G# e( w, g5 b  grain-here      1 H6 d3 t' E& F; S, W
  max-grain-here  
5 ]* |# f( E- x7 E9 C/ @]
3 y, `8 T2 _7 \' j" R2 Q! ~
6 Z# R1 F" B& o) l+ @turtles-own( I; T2 T' ^$ m6 w% y# K
[+ b* K- x' y  `" m) X
  age              ' M1 p* D* t. H( ~
  wealth         6 H, M4 R2 n7 @
  life-expectancy  3 H- c' M  c9 S3 T* r
  metabolism       " R& g' B3 N( d1 V, P& A9 r
  vision
0 I6 H0 w& V: |( h6 S  inherited         
$ u) J1 K5 q& ?0 \]3 l: Y' g4 g% |8 Y7 Z

4 z2 j* s7 i2 e, ~8 }6 ?; {+ ]) Q( e, [8 u% k+ k) w
to setup
- F+ Z* t1 E) Z4 U7 z  ca; E" e+ `4 q: k2 T) }
  set max-grain 50
& @1 B3 j" ~3 G) |  v5 J  setup-patches
! [* _, `$ u4 c! {  setup-turtles3 k5 v7 l* D  E; x' L0 {9 c5 @+ C
  setup-plots
% U3 B. N5 W: {6 ^6 n$ H  update-plots: m$ V  A9 I; L# g' k
end
. _% T/ I1 h$ s! H/ h( pto setup-patches6 K( u/ b9 T& C$ y$ R; k
  ask patches
" O: t* |- f2 A4 ^8 W$ k$ ~    [ set max-grain-here 08 ?6 X- Z% Y4 {- Z9 y4 v; n* _
      if (random-float 100.0) <= percent-best-land3 \0 t  c% n; @, {
        [ set max-grain-here max-grain
; I. e$ B% z) |; S) _5 J& `          set grain-here max-grain-here ] ]
1 E) {3 a. F5 Y3 v4 t  repeat 5
9 `( H3 J! z2 Z# A$ Q  w    [ ask patches with [max-grain-here != 0]
; ?# h3 i: ^0 {8 f! J7 D: r        [ set grain-here max-grain-here ]
7 U" a( I9 \- y5 V; z1 z$ P4 W      diffuse grain-here 0.5 ]6 a/ p% \' V) @& X; P
  repeat 101 r$ o) r" r3 j" b/ ~$ r
    [ diffuse grain-here 0.5]         
" W& m# y% Z; z" N  ask patches; q$ |/ r. Y, j) @7 ]9 E
    [ set grain-here floor grain-here    . v8 `, j7 U8 j2 z5 C
      set max-grain-here grain-here      0 V  V6 D) p& [$ j
      recolor-patch ]
. h! D& l; L7 y0 gend( C5 T) N( I- q" B0 `
to recolor-patch  , K4 H) N  D4 T$ J) d8 H5 N: k+ Y8 q
  set pcolor scale-color sky grain-here 0 max-grain
9 {3 z$ G# Y, G- M7 ^4 s* _end) d3 C1 c! X3 \" c8 P1 j" t+ G0 ~
to setup-turtles0 R7 d9 q' f" H
  set-default-shape turtles "person"* M- r$ t9 v& r* p( {
  crt num-people
, N4 A* x$ n3 R5 \6 \    [ move-to one-of patches  * Q% g3 M& D) g1 \0 G4 G* C, f( l, W* k
      set size 1.5  0 n5 M. G5 g' U& X. v( _% z
      set-initial-turtle-vars-age; Y0 f2 B- R. l1 j( t
      set-initial-turtle-vars-wealth1 p& A9 t/ ?: X0 B* h1 Q! E
      set age random life-expectancy ]
  C7 V1 j& H; H$ x  O) {  recolor-turtles8 J9 P# c2 k8 t. @
end
) t+ @+ l3 U! ?4 x$ k6 k% _( I
0 h/ W& ~6 }5 H9 o3 ^  tto set-initial-turtle-vars-age6 T! p3 x: w7 T
let max-wealth max [wealth] of turtles( ?9 o5 o5 Y9 a+ A: w. ~4 K; e
   
3 w9 J; q# [% z     ifelse (wealth <= max-wealth / 3)
$ W) z) Y: f2 S( B. ]        [ set color red 9 _( H1 C2 g8 t# M, |% e( H; O
          set age 0
( k7 Z( z! ]. m' u' a* [          face one-of neighbors4
% i& I, A7 B' \' E* J9 R2 \- M' }- x& {          set life-expectancy life-expectancy-min +
$ T% V& b4 j- v, A% c- s                        random life-expectancy-max
& X0 \) f3 _& P          set metabolism random 1 + metabolism-low) k6 g( v, m& F; J4 q. S( }
          set wealth metabolism + random 30% x# S2 ^+ }# \0 V8 U+ O
          set vision 1 + random max-vision2 r+ ?' _& H& P) C2 Z
             set wealth  wealth +  Wealth-inherited-low ]
% d9 I. _$ n$ o# x4 {1 g4 f        [ ifelse (wealth <= (max-wealth * 2 / 3))8 o9 K- l( ^2 a, I
            [ set color yellow , k  }; N6 q2 A9 d
              set age 0
$ i7 [; x; M2 w/ V              face one-of neighbors4
/ ?7 M$ _! N2 F0 B8 F. A/ E- `              set life-expectancy life-expectancy-min +# a6 @# ?/ M3 v' H/ K( h
                        random life-expectancy-max + 1
' r# h! ]9 q5 N) s) G; r, |4 K7 u              set metabolism  1 + random metabolism-mid; K% R6 B6 t. k* V5 z5 S
              set wealth metabolism + random 30
1 _& W0 I: ^. ]" r- N              set vision 3 + random max-vision# A5 G9 o+ k, \  D
                set wealth  wealth + Wealth-inherited-mid]
4 C8 j: a& p- F! c- l0 O2 I: m            [ set color green
; ^6 R  a( b, i7 t" I/ n' Y8 H: W              set age 0  J' [* }/ i, m
              face one-of neighbors4
. |) N  `1 k  K$ r( U              set life-expectancy life-expectancy-min +
' M7 h1 ?, p; Y. Q" h                        random life-expectancy-max  + 2) N8 d; C/ J1 n2 y" u7 b
              set metabolism 2 + random metabolism-up
6 \8 A1 l7 W3 M              set wealth metabolism + random 307 e' V1 t- ^9 C  k
              set vision 3 + random max-vision
& F+ u; h/ I8 b: l/ M! G  L2 Q3 y              set wealth  wealth + Wealth-inherited-up ] ] * O1 p3 ~% v3 \' u. e, O) Q- ~1 q, t
# w+ I6 |! m2 ]0 Q' T1 G1 A% C
end' F! M& M" g- X- D1 R( e% B; e
to set-initial-turtle-vars-wealth
$ x% R4 j9 O: B- ~$ \ let max-wealth max [wealth] of turtles# c7 s6 h! H6 v  t) {+ A3 j
          set age 0: t6 D4 n% `; i7 J* q
          face one-of neighbors4 + \& k% B0 t$ G0 e% ?; f
          set life-expectancy life-expectancy-min +
9 X8 ?5 x+ O) ~- F$ D) K. `, R( ~                        random life-expectancy-max
& l$ L, T+ }  g' B          set metabolism 1 + random metabolism-up, f" D+ |5 `$ ^+ U% a  Y* ?
          set wealth metabolism + random 30  Y: w" @4 c; ^/ c' q3 o/ Z$ F5 ]8 t
          set vision 1 + random max-vision 0 b$ F2 Q6 Y, A# y. d& F6 x
end
, d' F+ i4 D; ~6 d" M$ v0 Ito redistribution
& M! l: ^$ A; \! vlet max-wealth max [wealth] of turtles" L+ D1 i) o- ^- B
let min-wealth min [wealth] of turtles
: V1 f" Q/ i1 J5 b* jif (wealth <= max-wealth / 3)+ p* Q1 U# o; x( L+ W, A' i, _, ?
[set wealth  wealth + Low-income-protection ]7 c; _7 Q9 K" L0 P$ ~* ~4 }
end
  D( |, v* P' W         
& Y8 J4 _' ^; j4 d$ rto recolor-turtles7 E; E5 G5 t! J5 W7 f8 A. t
  let max-wealth max [wealth] of turtles
9 L- @+ L' G/ U4 f% F0 D  ask turtles
2 O6 C2 }6 \" s& T* h) K5 n; n7 i   [ ifelse (wealth <= max-wealth / 3)! o6 r- u0 \7 f# z# i
        [ set color red ]+ E+ N% s* [, G: i8 E
        [ ifelse (wealth <= (max-wealth * 2 / 3))
2 z& }" I0 T- C2 B" J- X            [ set color yellow ]4 j& F: a7 f; c
            [ set color green ] ] ]' K: U  h  `9 n/ t
ask turtles [ifelse show-wealth?
* `0 f& f  O7 R2 B8 H7 F  A+ i5 L    [ set label wealth ]* T' }7 Q* h' ~# D- M1 m
    [ set label "" ]]
5 R; W' n/ T% E' J* Xend
  k/ x8 c" A, M5 n$ g% r7 c7 _) K: Y3 g- Q4 [' Y
to go8 M  H! q1 C7 T* k
  ask turtles
$ u4 T% e1 Z6 W0 ?0 t  @    [ turn-towards-grain ]  
9 ?* r: T$ n3 q! X, o7 P  o  harvest" A3 e( ?7 _5 k  J: G3 s; E4 Y3 T
  ask turtles- ?. U! N( M- v  V2 |4 |
    [ move-eat-age-die ]& a. |2 `0 J- ^& b& T: n
  recolor-turtles6 b. S% B2 D  K5 N
  if ticks mod grain-growth-interval = 0
5 m: P" J) a% c6 T( k1 f9 W6 B    [ ask patches [ grow-grain ] ]4 C% Q; @* c' A# N$ [) I
   
# C' C5 ?( t) l# W, X8 g  if ticks mod 11 = 07 |: Z$ c5 \2 E6 H! D6 Z6 I
  [ask turtles
( i3 k; e( x" M( e" d, [7 V% L  [ redistribution ]]' I% E3 z4 g" H( @5 m
  if ticks mod 5 = 08 `* r! m9 x# [1 p0 o. i& [% y
   [ask turtles
1 z% _0 l4 d6 ^$ l9 ]9 r* [  [ visions ]]
& h' e7 P/ P& `  tick$ [1 b- ^+ ^0 M% ]5 x+ n
  update-plots
+ u7 o' Z1 F/ _  Jend
8 v! X1 @8 l' j& K- ~! n3 p9 J' b  Wto visions
( f- `2 n- ?' B. T set vision vision + 1
$ Y1 F# m0 X# J- i: [9 @' dend* y9 o2 _6 |% |! N% c

3 z6 }  U3 e: Q: S1 G  F. q+ b# L8 m

; |) ~! U! @  z) Z0 i$ f+ t; Xto turn-towards-grain  
: q9 X& i1 i& O, B0 _  set heading 04 K; y1 a5 O. c/ a6 Y' V, F7 y
  let best-direction 0
* m  X7 T+ A7 `( M$ a( {* m( B  let best-amount grain-ahead
9 d, v, H9 N) H4 {2 I9 I: E+ ?; r  set heading 90
) K8 O7 V0 `7 x: m) J  if (grain-ahead > best-amount)0 f# O3 J3 y9 b" {( ]4 A
    [ set best-direction 90
% {. Y( H/ _4 V: F& A      set best-amount grain-ahead ]1 m# D4 t' o4 ~! v1 r7 h$ _3 `
  set heading 1800 m) [! S/ @  Y$ h5 p' h5 U* Q
  if (grain-ahead > best-amount)) s& K! r) l9 j$ o2 I' C# X6 k
    [ set best-direction 1809 }1 x( C* D6 D
      set best-amount grain-ahead ]  s/ C8 S, [0 H% K; Q$ h" E
  set heading 270
4 l' v" J% c. |8 [# s* y  if (grain-ahead > best-amount)
! r. u9 c) y' e; _$ W    [ set best-direction 270  S6 w1 w; @: A9 P& q( K
      set best-amount grain-ahead ]
: f. M8 u+ E% {! W4 S  set heading best-direction
; L6 O: o0 I( _9 Y  Lend4 h8 |( v0 C3 \2 F

9 e% N! l/ X' Z& K# M* g
- ~+ @4 }. E" s: L2 ^0 A% Yto-report grain-ahead  9 `' i) c% o$ b* F
  let total 0
8 W2 X; M, K2 z% T2 r, }; _6 ]0 g  let how-far 1
: H6 B* @+ y! ^7 P  repeat vision
; S2 a0 w  L7 d8 }. H; m& z    [ set total total + [grain-here] of patch-ahead how-far# h! x( _9 Y+ v  M8 A- q
      set how-far how-far + 1 ]
: }+ e; z2 v# y  p  ^; h# e; K  report total; p+ e/ |) v6 i1 ~
end/ |! s7 _% O5 W1 x8 B/ u7 e
, i% @" ]- G7 V' b1 a0 c6 G' k
to grow-grain
. H/ p' e1 O+ N, J  if (grain-here < max-grain-here)8 V2 s0 e. q- w- {) |. G8 F
    [ set grain-here grain-here + num-grain-grown$ [) h$ h! [# |, v% U! C5 ?- n
      if (grain-here > max-grain-here) 8 n9 T! \* ?/ U
        [ set grain-here max-grain-here ]
; `4 f0 ?" I2 M( g, d      recolor-patch ]
* {# i, f# M1 Y" [end
& l3 O3 m! {- |/ _+ Q# U" Uto harvest
4 i* {+ t& [# B; b9 R' k  ask turtles
- X8 s3 W7 H& L    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
- H( J9 s( W+ w+ c/ O  ask turtles( `, a" Z' ]; a. G7 |6 X
    [ set grain-here 0* F5 t# M/ h8 `/ A+ L
      recolor-patch ]+ ~# g7 \' A8 R) Z
  
$ ]) i5 A5 |& T1 Y, i: }end
6 x. E  F  h& a# k9 ~
/ r4 i, a' X# ato move-eat-age-die  
  b: w- f( q) m( @- D# d  fd 15 U3 t( ^. U) p
  set wealth (wealth - metabolism)8 \4 _# I! |% v  z. n, l4 {3 A
    set age (age + 1)
* q. s. V$ ^* Q* |  if (age >= life-expectancy)
# e( |( a% `5 l9 k( E1 q' x    [ set-initial-turtle-vars-age ]9 N) J0 E8 j) o" Y* P0 D! \1 c; L
  if (wealth < 0)
2 t5 q& ~$ F! f6 q; P8 @1 Q    [ set-initial-turtle-vars-wealth ]4 E) C" e- J$ G7 N0 Z( D6 H
    1 P1 p7 i, J( d
end+ [& ~5 `, g' Y+ K8 w
$ e1 w2 c2 |! b4 L$ l! X& ?
/ G" o4 z$ M+ M
to setup-plots  s4 F8 L# R/ T* F" o  y4 U5 J
  set-current-plot "Class Plot"
+ f- N. v! I# {  set-plot-y-range 0 num-people
8 A: G" j9 ~1 P/ H9 v  set-current-plot "Class Histogram"4 S2 J/ q+ \1 f1 a3 a% F
  set-plot-y-range 0 num-people
5 M- {# U0 T3 j4 c1 B! Q* F) G* Iend
3 I6 l0 n8 ], P* J
6 G+ w9 ^, e+ H9 \+ {& rto update-plots
# h4 Y2 T0 Q: a. @# H* W  update-class-plot0 J& a' t' L; C  P% `8 L& c, A
  update-class-histogram, q( c5 E* T  k  H9 z+ \8 V0 A
  update-lorenz-and-gini-plots
) t6 n& u7 {8 W2 S" Vend
; ]* ~+ q. I$ _1 `, A
& v4 w) @" |( J  fto update-class-plot
" V1 q( ^/ z% K# V8 `- i# Q* O  set-current-plot "Class Plot"+ m" ?1 p& i3 U' `: T1 b& ^# Z0 W
  set-current-plot-pen "low", |) z4 ~- I/ \
  plot count turtles with [color = red]4 B4 L  y' G; l* Y) y, V
  set-current-plot-pen "mid"3 }3 c, f. V1 w4 C8 z
  plot count turtles with [color = yellow]
; n6 c4 s* P8 }. A! u8 r5 I  set-current-plot-pen "up"$ S1 @$ l, n3 W* b7 ?" D
  plot count turtles with [color = green]; x3 i) Z0 H6 d7 d% ]; [4 k' s: |* M
end
+ C2 n/ g+ a. i- J$ ?- A9 j8 L' P8 z6 n7 M9 L
to update-class-histogram
  O; d$ z7 x! S  g/ y  set-current-plot "Class Histogram"
. y* c0 Y6 o; {! Y" D  plot-pen-reset; Y3 ?% d) ?- O9 N' f
  set-plot-pen-color red
  K4 x0 A9 X. X9 {3 K  plot count turtles with [color = red]  I8 m- N8 l0 ~4 y+ B
  set-plot-pen-color yellow
1 e  d$ `: i0 X2 B3 y  plot count turtles with [color = yellow]
* V' x, [8 x6 [  {6 P9 E3 g  set-plot-pen-color green
% G! s  N+ t( a: d  plot count turtles with [color = green]: M. g7 n* Y! S0 K: f% s
end7 Y4 |4 G' e& B
to update-lorenz-and-gini-plots( H7 E" e  m1 d' v* L
  set-current-plot "Lorenz Curve"
  A  \3 Q7 c9 u6 t  clear-plot4 [1 t. S( O4 Q1 ~$ }

. t3 ?5 I4 c) R! N7 n# l  set-current-plot-pen "equal"
- ~- w# K$ ?1 D/ D! [3 ~  plot 0* h# P2 c, c# H6 S+ n" \+ c* K9 s' g
  plot 1003 b( N& ~( ^; v8 {( X4 G9 N) [

* Q% w0 {& |4 j# N  `( ^4 g  set-current-plot-pen "lorenz"
3 x, b/ X+ Q' w, i  set-plot-pen-interval 100 / num-people  y( p9 k' f0 S& [' f9 \
  plot 0
" |: `* E  t- @6 K) ^% E% n
( ~9 G! w# I% w% r  let sorted-wealths sort [wealth] of turtles
# Q& R: D( t2 C9 Q! z: `  let total-wealth sum sorted-wealths! u7 E0 X; F( R# ^7 r$ m
  let wealth-sum-so-far 0
) t' j# D, F0 O  let index 0
3 J$ Z- V1 A- I  z- o6 \  let gini-index-reserve 07 R: e7 i1 ^3 W$ L+ W3 C

  J7 v( _4 \2 j1 b$ o4 j9 m+ d  repeat num-people [
' Q/ L$ ~8 V" t& f1 y* u% O" \    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
. \7 X& A- q, ?! L3 C8 m2 L& |    plot (wealth-sum-so-far / total-wealth) * 100: a. J0 e$ c  a, r% {2 C
    set index (index + 1)6 I/ C2 {( o8 Y: a1 B
    set gini-index-reserve& h  p9 _2 Y) K( I# w/ B% ]: r
      gini-index-reserve +
$ R) k5 ?  B  D# e$ Q# ~- p0 s. ?# v      (index / num-people) -) n1 O* ?1 u4 k8 g. T
      (wealth-sum-so-far / total-wealth)2 N) U7 L7 y( n
  ]7 o7 b  k5 A7 m5 _% ^6 w, w

$ V$ P; d% e$ y4 s* V- k  set-current-plot "Gini-Index v. Time"
# L; W  A! `' r* I7 ]6 u  plot (gini-index-reserve / num-people) / area-of-equality-triangle: Y7 M: V" D# A7 f! L, U
end
" ^2 R" U$ A( @$ E$ H- }to-report area-of-equality-triangle  M9 ?2 i7 u' n6 ]' x% A/ z
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
, B) a7 j* ?$ Iend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-14 14:00 , Processed in 0.016287 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表