请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
8 N: `! m/ ] `; T0 Nglobals
A: a. X4 s$ ]' K: d8 V[! t: |* ^6 s* z6 |, ?
max-grain
2 M& e( }5 }" R& [# ~: S
^! y& |# K8 p4 B0 [+ G O7 p []6 ?; E1 E. K4 {5 [7 s7 Q2 c
( ]6 M& v L8 i! N1 W, T6 z
patches-own
0 N! B: q3 B* P; Y* }$ J1 j& j% m[
3 p F0 ~: _. |' O grain-here & C. c9 `7 w, ?# ~ T
max-grain-here
2 N- g% c- Q4 j5 p3 F]
' \+ J: K6 A& M: F" U/ A: H
7 g0 c, p( ]$ a0 R* p" e+ Oturtles-own/ n5 q4 S" Z$ i) ~1 l6 Y
[, s7 A0 I4 t" X( t/ T* t: ~
age `; u/ h" C( R
wealth / e3 ^+ d: S9 L
life-expectancy
& v# }/ B; V9 S4 [, w: o0 v metabolism O8 i3 h" w$ n+ A
vision) e3 r6 _0 F; [8 s" T7 H; S
inherited 0 }5 ^$ N e7 t7 k7 h: D
]" T h5 h7 {1 j9 V6 N
Z0 s' K3 T9 r; e- H% a, E
- S: A. ?3 V% U2 s2 s7 u8 I0 Oto setup
7 y% S- \) o7 M9 A4 |% U8 M' v ca5 x& O1 a4 e! I5 [% x z0 g1 a
set max-grain 50
, x9 ^0 S( t: Z1 r7 b; b% D- i { setup-patches, y7 G3 R9 j. C8 V o+ }
setup-turtles7 X6 L% X: i4 l% Z
setup-plots5 I2 P* N8 C5 V0 e
update-plots
6 N- k! c( E2 Q1 iend4 B) ?$ K- i3 r
to setup-patches7 O; P8 ?! T$ z' r: H# {) L
ask patches
4 a( _/ U. a. D C1 o. F [ set max-grain-here 0
3 ]* L5 a8 Y( z: s7 S# O, {; f0 ? if (random-float 100.0) <= percent-best-land
7 F7 S: v# W5 _! { [ set max-grain-here max-grain o7 y5 Z+ m; U9 @- H F
set grain-here max-grain-here ] ]* M# x$ B7 _. B2 b) Z) J4 U
repeat 55 d& _6 h/ F9 ]! ^ p1 |9 Z1 O
[ ask patches with [max-grain-here != 0], L) C- z% F0 m: M/ ^. P! H$ I |# o
[ set grain-here max-grain-here ]$ |1 p5 M+ @. W% q3 V" U
diffuse grain-here 0.5 ]
& y* D* i+ q" m+ D" R7 `2 N repeat 109 S1 H! N) [1 d2 e2 Q% l( L
[ diffuse grain-here 0.5]
3 m1 Z- |+ E& a1 \2 D8 h8 i0 K q ask patches
, C# [- K# x- M8 p5 E h9 v [ set grain-here floor grain-here
7 a) ]! q j: U% z set max-grain-here grain-here
! Q! k8 D* ~ A1 a& ]1 } recolor-patch ]5 Q) w% K$ Z' N3 x5 o
end
f" y3 U9 V) [ d8 Eto recolor-patch
C6 v; D) q8 f4 }9 Q set pcolor scale-color sky grain-here 0 max-grain9 P' s1 c1 E0 u9 ?4 a) C
end
' ]5 U7 g$ ~% H$ P# ]$ d I8 O2 Ato setup-turtles
P. C) G) d! i- I- p set-default-shape turtles "person"* T5 O; R+ ]5 D& ^
crt num-people
6 @0 o @% L4 l7 o" p p. D) } [ move-to one-of patches
" e# `: M3 u5 S& U' P& e set size 1.5
7 O1 J3 N2 \+ A6 `% C set-initial-turtle-vars-age
) J- y% ^( o3 |/ s set-initial-turtle-vars-wealth9 D& |, Y& F* R4 m0 R* B( {
set age random life-expectancy ]5 b7 v; P: |% Y1 I0 y
recolor-turtles: }. l# ]- {% R* K" [0 P
end, x! i. f7 r6 `7 `
# c6 Y. i# _$ L* G- M$ cto set-initial-turtle-vars-age1 L* p3 M+ H: W- d8 ]
let max-wealth max [wealth] of turtles- q% W4 E4 X9 p1 Y
3 N o e5 R! ]2 t ifelse (wealth <= max-wealth / 3)
3 N8 _& n7 i- i. P [ set color red / k9 b/ T) s, h- Z; }2 c( h" f+ f
set age 0
$ g9 V$ f9 c/ W face one-of neighbors4 7 \: O& x! i% @' h
set life-expectancy life-expectancy-min +
+ B8 {) O: i# X2 `" @! B1 t. D+ X5 g random life-expectancy-max 4 R1 R8 o7 H8 h) H
set metabolism random 1 + metabolism-low
7 K3 Y/ T% E+ S set wealth metabolism + random 30
! y3 m' c: _, S. m8 j( a set vision 1 + random max-vision
, h( y" ^0 X' i set wealth wealth + Wealth-inherited-low ]- V9 c# T: T" h4 D; b' S. o5 S6 r5 a
[ ifelse (wealth <= (max-wealth * 2 / 3))- b( ]. ^# M$ f7 W+ w
[ set color yellow
[7 x" x) g% D! A, S! p set age 0
; I1 ^4 ~$ j: t( [9 C/ y2 d' ~& @ face one-of neighbors4 % b4 j+ w3 B5 x. t
set life-expectancy life-expectancy-min ++ H) d q( @: J0 k
random life-expectancy-max + 1" L \, y3 V/ ^2 T
set metabolism 1 + random metabolism-mid4 u0 W8 z c$ {# b' P3 O
set wealth metabolism + random 30
' o8 N2 P) t- r0 u3 E, s set vision 3 + random max-vision
8 ~& v4 D8 i m1 G s1 i6 } set wealth wealth + Wealth-inherited-mid]& i/ \6 {$ W( L8 t1 N W; U
[ set color green
' Y, B" T+ l- x6 ^! ?$ Z: r" g/ o* l set age 0
+ g! U& Z5 X0 h1 k5 f face one-of neighbors4 / Q- j( G6 i- {6 f9 }
set life-expectancy life-expectancy-min +4 |. l/ c0 ~4 I& J/ c; _- y3 Z, f
random life-expectancy-max + 2
! E' P0 q( o6 e' F set metabolism 2 + random metabolism-up+ C: n2 J( Z" t! P! U8 E3 d
set wealth metabolism + random 30
& W3 w9 R3 ?$ U& D set vision 3 + random max-vision
9 R2 h! B; x8 W% H/ W" J set wealth wealth + Wealth-inherited-up ] ] / }! I1 }7 D# C8 q5 e# j5 _4 Q6 B
# ^8 E' Z$ y# d$ f' ^9 }2 _6 [7 rend+ G' ]* s- I+ t$ N' p
to set-initial-turtle-vars-wealth
, ~$ y# g) `# m, H5 X let max-wealth max [wealth] of turtles
9 w$ c1 f; v4 S6 | set age 0: w2 v5 l* @5 r; R
face one-of neighbors4
# X- A/ M5 h" \+ b set life-expectancy life-expectancy-min +# ?. R' y- [5 Z# ~) y' o
random life-expectancy-max 5 E% o% a% s' P
set metabolism 1 + random metabolism-up' _4 F8 ^+ O. m4 J# Y7 C! N
set wealth metabolism + random 301 u+ `0 Q2 H; [
set vision 1 + random max-vision
: ~% C4 K) E# j5 t6 \: vend
3 p& o, ]3 K. Z- E1 D/ U& M. ^to redistribution4 j& i# E3 N; T: ]/ E ]# t7 C4 _" N
let max-wealth max [wealth] of turtles
& v2 z1 `' `& r: f4 G* Ulet min-wealth min [wealth] of turtles
, [& A0 P [1 [! pif (wealth <= max-wealth / 3). x' _6 c4 z! U3 g2 n
[set wealth wealth + Low-income-protection ]
3 g, O% F; W2 s1 k% Bend
4 L: x! c& H; ]# V R
. S$ ?1 \( K( lto recolor-turtles4 }# q9 D3 q. s! o
let max-wealth max [wealth] of turtles" a' v0 k3 j+ F) K/ {5 W. y5 l
ask turtles+ ~$ M! y. d; [; R+ Y" L7 b: q
[ ifelse (wealth <= max-wealth / 3)
& U8 V. R" ?5 e8 L) ~+ V6 D [ set color red ]+ x5 T" b) `, P/ X: q- k E& Q
[ ifelse (wealth <= (max-wealth * 2 / 3))
+ L) _; }" u f% m$ t6 T+ X2 x/ C. H [ set color yellow ]& [% ?- N$ g. L
[ set color green ] ] ]
+ A3 y+ s# E5 o3 Q0 ?$ T" ] ask turtles [ifelse show-wealth?
' r+ q0 x( P; B1 P$ m' B2 D3 F [ set label wealth ]/ H9 B; b O: n6 h |
[ set label "" ]]
$ Q7 k& J! G- g6 d* `6 jend
! q% ~# x+ `6 R5 s: s3 g$ n; X( S
- w. O$ n+ \3 j+ h7 l* Rto go s3 d! W" }- e# `2 u; l- k, a/ z% m
ask turtles, _ g0 h7 A" h7 t- W
[ turn-towards-grain ]
% }3 b% A6 z. _, P( {6 r harvest
6 N+ z* o% Q" j# v! E% w8 Q4 k ask turtles6 @% |# [- {$ L; x
[ move-eat-age-die ]
0 D3 H+ e$ R8 {- j) B recolor-turtles% H7 s% q# d; c# [
if ticks mod grain-growth-interval = 04 f- R. l+ w a+ [$ v1 @( s
[ ask patches [ grow-grain ] ]
. t. @" S, _3 u ( m. E/ ?9 @+ `
if ticks mod 11 = 0
& o! r+ J' F+ y [ask turtles7 k- {, k. X; G4 M. x# U
[ redistribution ]]
6 u1 g. |: N! E5 _% k if ticks mod 5 = 0( K/ ]3 ?$ Y8 ^9 i. K7 z0 k
[ask turtles
& `0 T9 ~6 I( b; n# } [ visions ]]
/ p9 c- n- m! T$ [ tick$ s$ o# ^2 c7 {* s w; y* o
update-plots, J& Y. L, u* G- |8 j
end- O7 ?5 {7 v1 o+ ]5 [6 {
to visions/ l5 c0 e! r+ o) S0 d9 p
set vision vision + 1 ; e, W8 |* Z; u$ J( T# p9 d- V0 k
end
9 v/ H; e/ J+ V8 A2 h r/ s
+ B* M' }9 N" T- }* `' S% U+ R9 ?4 v- L( H/ R. H3 ?! l! O: j: [) m! m! o
& Y1 E" ~3 K X6 u+ Gto turn-towards-grain
* O9 [( g7 B2 j( k8 C' J set heading 0 [. t+ `! {( ^ ~
let best-direction 0
4 N& V6 w0 z( w let best-amount grain-ahead
& O v! A5 |, I0 Z set heading 90
" ?) r" Z4 m* C2 P$ V if (grain-ahead > best-amount)
* \, R' i2 l" j) Y f, i [ set best-direction 90+ n$ N9 [! _/ n. M* ]
set best-amount grain-ahead ]
3 p% z; x0 t" [# [+ i! F set heading 1804 \, a+ s. E4 G* \; y p% ^: c
if (grain-ahead > best-amount)
# l) l( I$ z( w, i [ set best-direction 180
* p* U5 y& f- ~$ K9 Q1 G set best-amount grain-ahead ]
7 b* z# K( k; o, h) r- u( z6 G& H set heading 270
: B5 X" U, n/ K! S' I if (grain-ahead > best-amount). K: n' m% ~+ b% S% @ ?0 T+ e
[ set best-direction 270
' z8 q$ M/ H$ d( j0 @ set best-amount grain-ahead ]
2 e, L1 {# G+ O2 d2 @ set heading best-direction3 s/ V9 q; \* N0 M, w. P- Q6 y
end. O5 i( a3 `- x4 d: {7 T J
) N. d3 l" y% R5 j5 E
8 i, q" z. \- g7 gto-report grain-ahead ) p1 O. g9 O; Z: n- i; x
let total 0/ J' F/ e/ n3 T
let how-far 1# x" C' J4 u/ L7 e7 d
repeat vision3 V! [( Z- S) e9 V# V' K X7 U
[ set total total + [grain-here] of patch-ahead how-far9 Z6 j3 }& |/ M! w; N7 t
set how-far how-far + 1 ]
! f& n! _5 I2 t) L( x, @" K* J report total
& q- Y# I. q; h- J. o4 hend+ D' t1 e+ Y' D V: W
) `6 K+ x1 d/ n& K* t6 q
to grow-grain
7 R# W1 p) Y4 H; c if (grain-here < max-grain-here)
* E" R/ ?. U7 Z( e( \& {. Q [ set grain-here grain-here + num-grain-grown7 ~, Y* X; D: i E' y0 X
if (grain-here > max-grain-here) 0 U* H% k2 `1 x7 \0 \5 \
[ set grain-here max-grain-here ]* L% M0 M% Q! L6 { Q8 |
recolor-patch ]
7 J+ f) ^: c5 r& ]% Eend& ]3 x) P7 L: U$ m/ H; O
to harvest
7 F2 p" ~) m$ [; c% ^8 V ask turtles
' c7 i3 q2 V- ?" ]9 |8 M [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]; r% R3 N& O2 W. B/ }' L: L, X& s
ask turtles
# A/ K6 [# I' x+ a1 n [ set grain-here 07 N: K7 s, A5 Z( g
recolor-patch ]
& b, B8 @/ \2 D: @! r* z 9 @2 q' _- T$ y1 _
end
, E0 Z. U# e3 A$ _# r( E2 U& H6 y- \- A5 r7 Y& `
to move-eat-age-die
s6 C/ L1 g' e: b5 p fd 1
8 V/ M+ q' T. V4 K `" e set wealth (wealth - metabolism)- D# C6 p$ m6 Q6 X; b
set age (age + 1)
% w# Y3 v6 ^" O- s0 A' U; N if (age >= life-expectancy)
! X+ M$ c! ]( Y" D( { [ set-initial-turtle-vars-age ]
- Y0 d, G; q- \8 O" w3 x( B& | if (wealth < 0)
' M5 b% o0 _# k% @ [ set-initial-turtle-vars-wealth ]
6 a) s& R- i7 O9 }7 ]6 n1 y 4 x. d6 n8 F- _' f. c, q
end
7 r* e' j2 B8 \4 O0 s- o; p1 l% E) B( R4 z& t& d, ~
3 M( p/ n1 t N0 S2 Uto setup-plots% C* a7 A; X0 l4 l2 |
set-current-plot "Class Plot"
) Z0 p' j# L' ]0 c/ e set-plot-y-range 0 num-people" N+ R" e) L) Z& _6 u! _0 T
set-current-plot "Class Histogram"6 I4 B, s/ o$ x0 o
set-plot-y-range 0 num-people: O. B3 P, Z1 U% ?9 j) J
end7 l- l0 @3 c" w! g
3 ?2 ^6 r/ G* y; Y2 ito update-plots/ t: Q& x4 ], V' U
update-class-plot
4 V+ C3 |2 b# e/ e: |6 H update-class-histogram
7 C& x% n: j% a: O# | update-lorenz-and-gini-plots5 v5 T$ H5 F5 D% a# }; l
end
* d) A p2 J. @0 p8 n* r/ t6 {* J; {! k* q: v1 k* i
to update-class-plot
( \8 ?/ d, ]( p" G& v/ Y set-current-plot "Class Plot". [4 m% e4 F8 Z9 ?$ I) n" |9 g
set-current-plot-pen "low"
, ^0 \& v+ V* E2 \9 l0 G plot count turtles with [color = red]" y% `3 F6 N: |) a
set-current-plot-pen "mid"
2 A4 t3 a- M! }! k) s plot count turtles with [color = yellow]
1 A) e2 P) Q) m6 L: J8 h; H2 e9 E set-current-plot-pen "up"' J& d! M/ H4 S) j5 G
plot count turtles with [color = green]
+ s1 r7 i3 D4 z. G; [; _6 I4 tend1 z1 K( [5 J- c0 y
$ \, M$ k2 @5 v- F) T1 Ito update-class-histogram" r" ]' q* @& G# d! y0 {9 Z
set-current-plot "Class Histogram"
/ K5 {6 V9 J, a z; U plot-pen-reset
. n4 v1 x q4 Q, \ set-plot-pen-color red. r& q) q, ]: c; n/ ~
plot count turtles with [color = red]
- F: x$ O7 h2 S/ `' G! C$ L set-plot-pen-color yellow
5 ]5 E* Y: S. i7 h( ]6 ^ k plot count turtles with [color = yellow]# N, U; \ Q0 `% N, n0 Z J
set-plot-pen-color green. o- W5 _# l3 F+ H+ u
plot count turtles with [color = green]1 P# |0 n( b' u' i& U) @
end- v& L0 `. M9 [# q; B- {
to update-lorenz-and-gini-plots! [! ?: d. P: L7 d' j% X
set-current-plot "Lorenz Curve"
6 r4 R! j% ~0 i- b! } clear-plot
& r# ~8 z; m7 I3 j- Q4 G0 I1 r% u D4 T
set-current-plot-pen "equal"- D8 k2 p: ]1 ^/ p
plot 0( _, r! l% G8 G8 @- N* C+ Z
plot 100
- J7 ?: `3 l( C! @% R2 n
. Y$ t( y( t( U" D6 Y set-current-plot-pen "lorenz"* ]6 b$ w L" g% z
set-plot-pen-interval 100 / num-people
6 B, W8 s. r* Y4 c0 l plot 0/ S) g" N7 O. Z7 I1 C- V2 m) e5 z
. _6 r- o: Q: F c let sorted-wealths sort [wealth] of turtles, W1 O! o. h) v- x( _& ^
let total-wealth sum sorted-wealths! y8 h! Y! Z! t$ _
let wealth-sum-so-far 0/ r6 V) ?/ L: E6 Q) B5 }& B
let index 0! G6 `. @9 g) E5 B @
let gini-index-reserve 08 f4 F- ~" q" {( ^5 b( ^! p, X
: U! D% I2 Z; A* \ C& O+ {$ D repeat num-people [( R& G) O. X, j% y2 `9 F
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)/ q8 f S4 h# ?# O0 N
plot (wealth-sum-so-far / total-wealth) * 100
5 r9 O' H& Q) m1 ^; g, d set index (index + 1)' a+ H4 Q* D! s G
set gini-index-reserve, Y2 Z4 T# R. I) ^, q, I) Z
gini-index-reserve +# \0 ], m% g# |$ w7 B
(index / num-people) -
. Q+ P/ F+ d' T" W5 C/ U) i (wealth-sum-so-far / total-wealth)
, Y/ {- m1 m E( \0 r ]. r" r \$ d$ G: p- u
3 [7 v N3 o" ]! P
set-current-plot "Gini-Index v. Time"( S+ R( }6 O/ w! ^! i
plot (gini-index-reserve / num-people) / area-of-equality-triangle1 e- j$ M9 F3 D' j( c( H
end" l- h# L' @' W! | p
to-report area-of-equality-triangle
% L" I2 F8 c4 j: ^+ T report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
% w, k9 s3 x% N5 send |