请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现7 Z, [0 B/ o0 S. b& @ P% v8 g
globals
2 n- v# H! U) }2 h[9 I! l9 A* x9 `$ ^) U, q/ }9 \. d# l
max-grain
$ o+ R" L: |0 c3 B3 P8 H: o
- A- t! I' h+ U6 V]$ ~# X7 S* {" }/ V5 Y" L) Z9 H
& D; y/ j9 Z6 D( m7 \% ]% ^
patches-own
- S* ~% \- @( g( Q9 t& P0 H! q[* K6 f+ A# [; D) E! w
grain-here & D% _6 I% o: b* L9 x' {3 h; I" U
max-grain-here ) n7 d0 y ]6 h: u3 p
]6 I; K* y5 E1 O
* J# H+ O1 }9 t9 C% U
turtles-own
6 H+ a" X5 Z# Y- H+ M! n[* l" g" Y' \* f
age 8 t; r- \) y7 C4 H, }# W
wealth
& v- @( R$ r4 a- c life-expectancy
8 x, o- ]- W9 N0 M metabolism
2 x$ m7 e9 ~& o7 b+ o vision
. z; M J+ K0 A/ y1 U" b" ~8 ] inherited 8 p0 F- i. Y# s$ P
]
* M2 S _" k1 H! W& Y2 k2 Y1 R& U }$ B
3 Z& d- ]9 m5 Q8 s" M1 Wto setup
/ Q J7 h% h: u. s e9 ] ca
# _9 n8 y! y9 |! S$ @6 X set max-grain 50- ]6 j* M9 ?2 `8 b
setup-patches( U" _/ l4 Z. ]
setup-turtles
/ \+ Y; a& O7 v& k setup-plots- l" u1 r7 }9 O; J" h+ N
update-plots
" h6 a9 M! a' x) b4 T2 ^$ [end
" \- d. j% X2 Q* c! tto setup-patches2 d0 B8 j. T9 A2 n7 r
ask patches
1 s+ D9 V% N1 E g0 x) ~" u [ set max-grain-here 0
9 H- ]1 Y; j/ W: {- v+ P0 |, M" C if (random-float 100.0) <= percent-best-land0 `3 O8 w) C- u
[ set max-grain-here max-grain
$ B0 s7 v7 D2 D( s- @ set grain-here max-grain-here ] ]& \: c- K# O4 D% l
repeat 5$ K' W* @+ `* ?0 {) ~! ^/ w+ f0 G
[ ask patches with [max-grain-here != 0]( g3 L9 L, {6 e1 o' [- q7 n8 d2 e) K
[ set grain-here max-grain-here ], S" H0 x: I6 U% S7 ]! C
diffuse grain-here 0.5 ]- d. e$ l- u# f0 ?, R2 d! |9 U) D
repeat 10% U9 j, l+ j, E3 q- E7 J: K( F
[ diffuse grain-here 0.5]
* p' v3 B; H2 E3 Q3 B( U& ?. P9 E ask patches
" J; ?1 x( ?; G1 C; p [ set grain-here floor grain-here
) z7 v3 J) K( p G0 h) z. T @ set max-grain-here grain-here
& _6 ^' s; V) d3 q& ?8 A' A. U# p recolor-patch ]
$ s' _1 U3 d; V4 ?end7 C) s2 A7 \+ m8 a$ S
to recolor-patch
" ]7 j7 C. V& m- O$ O+ W set pcolor scale-color sky grain-here 0 max-grain; |! I' `: z0 K2 L
end* ]. I T* q6 A; a8 y' v4 q
to setup-turtles
' l2 q4 |# O4 z5 s set-default-shape turtles "person"5 c9 X# P4 s1 ^/ Z7 b, k$ g
crt num-people
3 n: S; w1 N. s9 A. i" m [ move-to one-of patches
' k0 H7 F. v# d: [& H! }: v# U set size 1.5
/ d" j" y7 h. `) g* a3 d) r set-initial-turtle-vars-age
+ X5 c: ~& Q6 v) J# ~8 I9 | set-initial-turtle-vars-wealth
' x* S8 E' [# ` set age random life-expectancy ]9 ?- C1 Z- [2 i! |# I5 o
recolor-turtles# Y1 F3 @8 V) b4 o
end
) N! r" p' i* Y) r& b7 H8 |: }8 @: V8 P
to set-initial-turtle-vars-age
0 U9 [& `& e+ V5 `; [+ i let max-wealth max [wealth] of turtles
. |+ r' ~, @( [6 a' `( H # ~* J$ }9 o0 n/ e q
ifelse (wealth <= max-wealth / 3)
+ R' n1 n5 C7 x& Z* Q [ set color red
% I3 h! N) K% O set age 07 A' i: H! S) C3 W
face one-of neighbors4
4 a1 g2 w4 y( L9 {& W4 ? set life-expectancy life-expectancy-min +! X4 x, Q: G9 r# ]' A- {# ]! s
random life-expectancy-max
, X6 x- N! `, ~8 n9 w set metabolism random 1 + metabolism-low
* |7 R2 |& H( i set wealth metabolism + random 30
0 s/ a/ b9 Y3 j/ F4 U3 u+ v: z set vision 1 + random max-vision
2 o5 a8 A" o% H2 f- C% u+ U3 `4 p set wealth wealth + Wealth-inherited-low ]7 Z" S: q2 K2 o4 m S; c
[ ifelse (wealth <= (max-wealth * 2 / 3))* @" ~! |; ]$ g \
[ set color yellow
7 _8 H/ e. l: ~5 Y6 p$ N- J set age 0 N' {0 h3 j; |! @
face one-of neighbors4
9 M0 ~! T) }, ^6 i% u% q set life-expectancy life-expectancy-min +
. C2 P3 \! c" P' m. { random life-expectancy-max + 13 [ L4 I9 B0 I/ h
set metabolism 1 + random metabolism-mid
4 w4 N! D' {# u) e' ~ set wealth metabolism + random 307 e& \+ Q, l# H+ P
set vision 3 + random max-vision
, U& X* K- H/ S5 Z4 G1 T set wealth wealth + Wealth-inherited-mid]
; D. h6 u. F" ^ [ set color green & `! `1 x- W4 T/ V' ^! a
set age 0
" d: R8 h1 u) F& Q7 [* p& H face one-of neighbors4
+ v- L& u4 ^+ f7 Z2 u- Y% e& O set life-expectancy life-expectancy-min +$ |# b5 Z# `% |1 f/ p7 b
random life-expectancy-max + 2
9 J$ c* E: V0 t: Q& j set metabolism 2 + random metabolism-up
2 X# i: A% S: r, O+ Q3 I set wealth metabolism + random 30
; S, Z. O% r/ G9 I" V set vision 3 + random max-vision
6 v9 h6 ]. S! e4 S5 S" ?4 u set wealth wealth + Wealth-inherited-up ] ]
6 g, Y3 \) { Z! B& G; c6 P
$ Z; R* m7 C: d- Iend
, y0 ]6 Q! i$ z- O, Uto set-initial-turtle-vars-wealth
! N* j0 g7 y+ b7 G6 C let max-wealth max [wealth] of turtles) _4 e& w& \% g2 I
set age 0
n5 V B, o$ `9 q/ i# P0 k+ l- S face one-of neighbors4
) [* E) p! Y5 m9 j+ @) ? set life-expectancy life-expectancy-min +
. f; B5 W% g9 e& j random life-expectancy-max
: l b: A' a5 O* o2 [ set metabolism 1 + random metabolism-up9 ]+ v! K/ c4 ^+ F; O" Y$ a( Q" R
set wealth metabolism + random 30
* k- Q4 v5 G/ r @/ \6 U1 X3 ?" e set vision 1 + random max-vision
! y" G; W. S, N- `% H7 ^end
1 Q T% v1 S8 _: @% Bto redistribution: {4 G2 m7 |1 V0 _/ f, E
let max-wealth max [wealth] of turtles1 w6 c0 @* [1 h, C) J
let min-wealth min [wealth] of turtles# D0 e0 \' K& V& L
if (wealth <= max-wealth / 3)3 E) M$ {& Y$ H0 P' o7 ~( k
[set wealth wealth + Low-income-protection ]
, Q1 [. e; L& Zend3 ?4 c+ n F7 C$ Z6 G: ]2 F
5 t' M/ A) ^6 O. z. s3 Y: Nto recolor-turtles! J. I9 l6 F8 ]8 q/ x* k/ n( q; Z0 d
let max-wealth max [wealth] of turtles# G, r+ b* B/ e1 ~/ ?& l
ask turtles/ ~+ i- }) n9 e* Y' Y/ ~ X; z/ O
[ ifelse (wealth <= max-wealth / 3)7 |2 _( E" k2 y" _
[ set color red ] G/ l) {$ Y: T( j
[ ifelse (wealth <= (max-wealth * 2 / 3)); G' \( B8 Y0 d8 U" W, }0 _
[ set color yellow ]
$ v: H! Z' f( t [ set color green ] ] ]
2 a6 q6 b2 D. @ ask turtles [ifelse show-wealth? e+ _) A+ o/ ^$ j
[ set label wealth ]
! T( q$ a6 P( \+ }3 j5 [ [ set label "" ]]2 m4 w1 M% I i
end
6 b0 w. Q: R$ k$ `' h5 H- X4 s2 R. t3 c
to go+ S& i/ G1 r7 Z) {# _+ [
ask turtles
/ |7 E0 ~- ?* ~8 ~ [ turn-towards-grain ] ! a) ~4 `( ^. b: ~7 _( A
harvest
7 |/ ?" f# {8 o1 u1 x1 y9 ] ask turtles5 a f5 ?9 D9 k4 O' F: F( a
[ move-eat-age-die ]% w9 d6 p6 S) _; w) d
recolor-turtles* ~2 G6 Q% a" ^% n& m3 w Q
if ticks mod grain-growth-interval = 0
q, ^% D+ r1 I3 P [ ask patches [ grow-grain ] ]
$ S4 T7 s1 H: ]: x+ L/ y( X2 {
+ y |+ y( {) t, Z" i* z% Q3 O% T6 v if ticks mod 11 = 0
3 [( B4 p- X4 l B [ask turtles
( c3 V) p8 E& L [ redistribution ]]
9 O. ^4 b; m9 ~" ~! B if ticks mod 5 = 0
+ f) J6 P# X! h+ M2 V* z. ` [ask turtles- Y( W; L( I6 g- v' `( f
[ visions ]]
q6 [" @$ G2 E4 B1 \+ Z% A tick
& B# E/ V4 O E. L update-plots
8 e, [4 e# P7 [end3 |- L* @0 i5 L3 c* a
to visions
$ T2 V5 m& j, y set vision vision + 1
1 J4 J! K( c: R4 K* mend, w0 F- r1 ? c
" Q, y# G. o. }+ R1 G
$ ]0 \9 y' _; i5 N5 Q
7 H8 k) l3 i2 s+ U( N4 ^9 Lto turn-towards-grain ! y) t2 G7 Z3 v* k
set heading 0! M6 n: M* R- d3 a) _
let best-direction 0- A V# [. l" x# e( W
let best-amount grain-ahead
/ V* X4 M7 `+ [' t, n2 K" K set heading 90
+ `' }; g* c& B2 R& F4 P if (grain-ahead > best-amount)
% Y4 P1 f) z* O- b: t1 A: Y [ set best-direction 90
3 C9 J! i: c2 m9 b$ l3 ~ set best-amount grain-ahead ]
@0 \. ]" l3 K set heading 180
' c9 s- Y, N' t1 ^) v" I) ~$ o if (grain-ahead > best-amount)
0 {6 C; B+ p$ o# {2 X; `$ l [ set best-direction 1802 k! ^) b/ h% h% D. c: d) y) w8 {. G: D
set best-amount grain-ahead ]
0 B0 p0 A' E5 A9 m set heading 270
. z! `+ P) |6 U* f0 {/ k if (grain-ahead > best-amount)" t2 ?; _( i5 B$ p( K# D+ \
[ set best-direction 270
& @' I; ~! x# X. r4 w set best-amount grain-ahead ]
: r+ y2 g+ l) r( e set heading best-direction6 ]4 p7 M/ w6 y7 I& r3 l# m
end4 E% r4 @& g8 o' T% u
* P4 I7 U8 Z$ p4 T/ S+ X, I
' Z7 h8 I. e* F) }- ?5 g
to-report grain-ahead " i l1 q, f0 Y
let total 06 m$ x: l( K8 Q, G9 g+ c. h( ^, Z4 C
let how-far 18 K8 n. u/ e. A2 S: R9 l( t
repeat vision
6 P, g; c( y; _* z [ set total total + [grain-here] of patch-ahead how-far4 r9 }# Q% k/ f
set how-far how-far + 1 ]
. X# ?; ^3 t6 k' B: B. W$ _ report total% P% Z7 G3 @; [+ w! y! W
end
: e; x2 a1 o; b, V* X& z' i. i* D, ~* a7 @) a
to grow-grain
1 ]+ n0 {, U; O8 J2 Z+ \ if (grain-here < max-grain-here). ? p# H( K2 \# l8 ?0 N H
[ set grain-here grain-here + num-grain-grown
4 W- L* B8 H `4 `" y if (grain-here > max-grain-here) % O: y( o( f6 s+ j
[ set grain-here max-grain-here ]
0 a. g9 |7 d# c9 j" E( | recolor-patch ]
7 H$ J% \5 \/ M7 u6 Eend
4 E$ Y0 t! V0 l% Z) U& t6 xto harvest
* y' c& X4 d( d. N; h ask turtles
: w2 p6 U% A! D8 D [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
8 f/ @3 e: E! h ask turtles0 v) l: u& Y9 F" r' c% v
[ set grain-here 05 \- ^. g9 X, P. G' h' u
recolor-patch ]
2 _9 `# f! u/ E ( ~- G) \5 y' U: }& |- ^* C X
end. u6 j N$ s) ^/ ^6 h. ?/ I5 e
# e6 G' q# x% ato move-eat-age-die
: g7 q3 o5 o5 Q0 n: i fd 1
) M' l6 @3 |- C/ \0 m5 ~ set wealth (wealth - metabolism) `% R+ J/ T" y( y" q" N" L4 X8 o( m
set age (age + 1)
5 t" e/ w/ y9 i8 f. G if (age >= life-expectancy)
9 v8 F) b, t6 L1 ^ [ set-initial-turtle-vars-age ]
9 b; b2 k6 j9 a T if (wealth < 0), B8 n4 ` ^4 R0 }) ?
[ set-initial-turtle-vars-wealth ]
3 s. g. U, f+ r N5 [% b: s, j/ ? * F. j% K/ e+ e- F2 w
end
" X+ Q. j2 z2 h3 D. A) T$ Z, _% A" r4 L# i* P0 r
2 K# K0 w6 S5 K% d8 ]
to setup-plots, u$ {( J0 ^5 e) H7 w2 H/ g9 c5 u
set-current-plot "Class Plot"
2 }- ^" @: h( d& X1 `% T set-plot-y-range 0 num-people/ I. L* K" @5 S7 Z6 h5 e
set-current-plot "Class Histogram"' o L% L4 f, H' P
set-plot-y-range 0 num-people) G8 w+ o( G' y
end
& P, p3 m3 n7 b1 V+ z( ]- {
# O2 Z. |! _+ H# o, }' d9 j: oto update-plots% C' H8 O3 g: c2 X% V2 H1 O
update-class-plot
5 w* q0 U$ T! x7 V4 ~ update-class-histogram6 w+ p5 m* T7 n) \
update-lorenz-and-gini-plots! e- m* a! X- `: \
end/ B& [/ z: O2 A( x6 ~' H& I
4 R4 J4 G; n* t6 i! r2 L6 s7 i, t- y
to update-class-plot1 s1 O% y. Z9 S$ u* R
set-current-plot "Class Plot"- Y2 o+ b$ ^ P# I; K6 C
set-current-plot-pen "low"
0 i3 r' }4 X: r8 S: R plot count turtles with [color = red], E5 |, U$ u0 L
set-current-plot-pen "mid". u' N/ m- S A! S' J& s1 t: ~
plot count turtles with [color = yellow]
4 R! N! a7 Z8 U9 J, w; V7 A set-current-plot-pen "up", D8 M2 o5 |& k! b' z" U m5 [
plot count turtles with [color = green]
6 d% ~. G3 {( W) [end
! d. r1 i0 x8 s
2 J& s' A' a5 j) rto update-class-histogram
- r7 n7 H& }. y, V set-current-plot "Class Histogram"
7 J- ]: A: o1 `0 t) `- \" Q plot-pen-reset9 K, M. Y1 j2 o W
set-plot-pen-color red
% Q+ x& M0 O# I plot count turtles with [color = red]8 I/ [3 e1 i4 ?8 C' B$ @* \6 D
set-plot-pen-color yellow( o u$ F; Y$ X4 n' ~8 p) E
plot count turtles with [color = yellow]
) }# u9 ]5 t9 _$ U( O% V set-plot-pen-color green* o5 E' s9 o! V$ U" k2 c
plot count turtles with [color = green]
0 M6 w4 Y6 \0 V& oend
& ]4 h5 P5 o0 ~to update-lorenz-and-gini-plots
8 J$ n0 }5 h! o. L' o& j* o& }. A set-current-plot "Lorenz Curve"- a: `# T) K) p! O( F( g) I
clear-plot! q/ y( q& W0 M
9 X& a) Z4 G# J: k4 j& x+ w" z set-current-plot-pen "equal"
) d3 w, v5 r; @ plot 0
& ?8 v1 ?! c5 _& z plot 100: x6 K) G) |" S
/ {" j' Z2 K) }- n- b9 G set-current-plot-pen "lorenz"
/ q2 ~: D5 q4 P- H/ } set-plot-pen-interval 100 / num-people7 k9 x9 W* b' o+ t0 g
plot 0
. V _ Q' P8 ^# f$ x& r- j7 L; Z+ m1 G4 v! z. ^5 |
let sorted-wealths sort [wealth] of turtles
* I# ]# i. M# m: }) k s let total-wealth sum sorted-wealths
8 C! e4 M1 Z% [ K y& n let wealth-sum-so-far 0: v9 L. }! n' r' y
let index 0' ~! O, h( w( U7 n+ G
let gini-index-reserve 0
' }4 w1 U# N/ c- q- w" d- u( e( y" m( E! Y
repeat num-people [3 y# P1 l7 ]6 V2 \
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)8 f7 @; S( U5 [5 p
plot (wealth-sum-so-far / total-wealth) * 100# y. S' \. E G Z6 n
set index (index + 1)
: ~- I9 f; L: z! Z! p6 p+ I set gini-index-reserve5 Z* N; q( d! Y0 q/ ^
gini-index-reserve + j3 C* T8 x3 ]$ @; A
(index / num-people) -
$ R# K! S! o- | (wealth-sum-so-far / total-wealth), U3 L$ {) n! F! K4 ^. C
] Q7 f0 c' p1 G4 K
U/ Y& {7 I3 ^
set-current-plot "Gini-Index v. Time"
9 g# `1 j7 o3 \7 A! b/ X plot (gini-index-reserve / num-people) / area-of-equality-triangle, W6 l9 u- \) z! K$ ]
end
6 }& u; J# Q8 f8 ]/ _/ B Rto-report area-of-equality-triangle
! p) E# m5 M9 `, T report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
4 S; O, W6 k _8 w9 wend |