请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
# i: q+ M$ ~$ dglobals8 z3 Z+ r3 c" i3 ]2 R: A# M* J) l
[4 g1 h' C1 E& x
max-grain ; V1 @3 t6 Z" w% v' j* Z" g% F
& X$ _ {- C) t; \
]
# c" |3 e0 v/ C# L3 C" R6 m8 n/ W5 K2 P: M
patches-own Z: l6 @5 U& z. y0 s4 E& k
[
4 S# G5 r, G# e( w, g5 b grain-here 1 H6 d3 t' E& F; S, W
max-grain-here
5 ]* |# f( E- x7 E9 C/ @]
3 y, `8 T2 _7 \' j" R2 Q! ~
6 Z# R1 F" B& o) l+ @turtles-own( I; T2 T' ^$ m6 w% y# K
[+ b* K- x' y `" m) X
age ' M1 p* D* t. H( ~
wealth 6 H, M4 R2 n7 @
life-expectancy 3 H- c' M c9 S3 T* r
metabolism " R& g' B3 N( d1 V, P& A9 r
vision
0 I6 H0 w& V: |( h6 S inherited
$ u) J1 K5 q& ?0 \]3 l: Y' g4 g% |8 Y7 Z
4 z2 j* s7 i2 e, ~8 }6 ?; {+ ]) Q( e, [8 u% k+ k) w
to setup
- F+ Z* t1 E) Z4 U7 z ca; E" e+ `4 q: k2 T) }
set max-grain 50
& @1 B3 j" ~3 G) | v5 J setup-patches
! [* _, `$ u4 c! { setup-turtles3 k5 v7 l* D E; x' L0 {9 c5 @+ C
setup-plots
% U3 B. N5 W: {6 ^6 n$ H update-plots: m$ V A9 I; L# g' k
end
. _% T/ I1 h$ s! H/ h( pto setup-patches6 K( u/ b9 T& C$ y$ R; k
ask patches
" O: t* |- f2 A4 ^8 W$ k$ ~ [ set max-grain-here 08 ?6 X- Z% Y4 {- Z9 y4 v; n* _
if (random-float 100.0) <= percent-best-land3 \0 t c% n; @, {
[ set max-grain-here max-grain
; I. e$ B% z) |; S) _5 J& ` set grain-here max-grain-here ] ]
1 E) {3 a. F5 Y3 v4 t repeat 5
9 `( H3 J! z2 Z# A$ Q w [ ask patches with [max-grain-here != 0]
; ?# h3 i: ^0 {8 f! J7 D: r [ set grain-here max-grain-here ]
7 U" a( I9 \- y5 V; z1 z$ P4 W diffuse grain-here 0.5 ]6 a/ p% \' V) @& X; P
repeat 101 r$ o) r" r3 j" b/ ~$ r
[ diffuse grain-here 0.5]
" W& m# y% Z; z" N ask patches; q$ |/ r. Y, j) @7 ]9 E
[ set grain-here floor grain-here . v8 `, j7 U8 j2 z5 C
set max-grain-here grain-here 0 V V6 D) p& [$ j
recolor-patch ]
. h! D& l; L7 y0 gend( C5 T) N( I- q" B0 `
to recolor-patch , K4 H) N D4 T$ J) d8 H5 N: k+ Y8 q
set pcolor scale-color sky grain-here 0 max-grain
9 {3 z$ G# Y, G- M7 ^4 s* _end) d3 C1 c! X3 \" c8 P1 j" t+ G0 ~
to setup-turtles0 R7 d9 q' f" H
set-default-shape turtles "person"* M- r$ t9 v& r* p( {
crt num-people
, N4 A* x$ n3 R5 \6 \ [ move-to one-of patches * Q% g3 M& D) g1 \0 G4 G* C, f( l, W* k
set size 1.5 0 n5 M. G5 g' U& X. v( _% z
set-initial-turtle-vars-age; Y0 f2 B- R. l1 j( t
set-initial-turtle-vars-wealth1 p& A9 t/ ?: X0 B* h1 Q! E
set age random life-expectancy ]
C7 V1 j& H; H$ x O) { recolor-turtles8 J9 P# c2 k8 t. @
end
) t+ @+ l3 U! ?4 x$ k6 k% _( I
0 h/ W& ~6 }5 H9 o3 ^ tto set-initial-turtle-vars-age6 T! p3 x: w7 T
let max-wealth max [wealth] of turtles( ?9 o5 o5 Y9 a+ A: w. ~4 K; e
3 w9 J; q# [% z ifelse (wealth <= max-wealth / 3)
$ W) z) Y: f2 S( B. ] [ set color red 9 _( H1 C2 g8 t# M, |% e( H; O
set age 0
( k7 Z( z! ]. m' u' a* [ face one-of neighbors4
% i& I, A7 B' \' E* J9 R2 \- M' }- x& { set life-expectancy life-expectancy-min +
$ T% V& b4 j- v, A% c- s random life-expectancy-max
& X0 \) f3 _& P set metabolism random 1 + metabolism-low) k6 g( v, m& F; J4 q. S( }
set wealth metabolism + random 30% x# S2 ^+ }# \0 V8 U+ O
set vision 1 + random max-vision2 r+ ?' _& H& P) C2 Z
set wealth wealth + Wealth-inherited-low ]
% d9 I. _$ n$ o# x4 {1 g4 f [ ifelse (wealth <= (max-wealth * 2 / 3))8 o9 K- l( ^2 a, I
[ set color yellow , k }; N6 q2 A9 d
set age 0
$ i7 [; x; M2 w/ V face one-of neighbors4
/ ?7 M$ _! N2 F0 B8 F. A/ E- ` set life-expectancy life-expectancy-min +# a6 @# ?/ M3 v' H/ K( h
random life-expectancy-max + 1
' r# h! ]9 q5 N) s) G; r, |4 K7 u set metabolism 1 + random metabolism-mid; K% R6 B6 t. k* V5 z5 S
set wealth metabolism + random 30
1 _& W0 I: ^. ]" r- N set vision 3 + random max-vision# A5 G9 o+ k, \ D
set wealth wealth + Wealth-inherited-mid]
4 C8 j: a& p- F! c- l0 O2 I: m [ set color green
; ^6 R a( b, i7 t" I/ n' Y8 H: W set age 0 J' [* }/ i, m
face one-of neighbors4
. |) N `1 k K$ r( U set life-expectancy life-expectancy-min +
' M7 h1 ?, p; Y. Q" h random life-expectancy-max + 2) N8 d; C/ J1 n2 y" u7 b
set metabolism 2 + random metabolism-up
6 \8 A1 l7 W3 M set wealth metabolism + random 307 e' V1 t- ^9 C k
set vision 3 + random max-vision
& F+ u; h/ I8 b: l/ M! G L2 Q3 y set wealth wealth + Wealth-inherited-up ] ] * O1 p3 ~% v3 \' u. e, O) Q- ~1 q, t
# w+ I6 |! m2 ]0 Q' T1 G1 A% C
end' F! M& M" g- X- D1 R( e% B; e
to set-initial-turtle-vars-wealth
$ x% R4 j9 O: B- ~$ \ let max-wealth max [wealth] of turtles# c7 s6 h! H6 v t) {+ A3 j
set age 0: t6 D4 n% `; i7 J* q
face one-of neighbors4 + \& k% B0 t$ G0 e% ?; f
set life-expectancy life-expectancy-min +
9 X8 ?5 x+ O) ~- F$ D) K. `, R( ~ random life-expectancy-max
& l$ L, T+ } g' B set metabolism 1 + random metabolism-up, f" D+ |5 `$ ^+ U% a Y* ?
set wealth metabolism + random 30 Y: w" @4 c; ^/ c' q3 o/ Z$ F5 ]8 t
set vision 1 + random max-vision 0 b$ F2 Q6 Y, A# y. d& F6 x
end
, d' F+ i4 D; ~6 d" M$ v0 Ito redistribution
& M! l: ^$ A; \! vlet max-wealth max [wealth] of turtles" L+ D1 i) o- ^- B
let min-wealth min [wealth] of turtles
: V1 f" Q/ i1 J5 b* jif (wealth <= max-wealth / 3)+ p* Q1 U# o; x( L+ W, A' i, _, ?
[set wealth wealth + Low-income-protection ]7 c; _7 Q9 K" L0 P$ ~* ~4 }
end
D( |, v* P' W
& Y8 J4 _' ^; j4 d$ rto recolor-turtles7 E; E5 G5 t! J5 W7 f8 A. t
let max-wealth max [wealth] of turtles
9 L- @+ L' G/ U4 f% F0 D ask turtles
2 O6 C2 }6 \" s& T* h) K5 n; n7 i [ ifelse (wealth <= max-wealth / 3)! o6 r- u0 \7 f# z# i
[ set color red ]+ E+ N% s* [, G: i8 E
[ ifelse (wealth <= (max-wealth * 2 / 3))
2 z& }" I0 T- C2 B" J- X [ set color yellow ]4 j& F: a7 f; c
[ set color green ] ] ]' K: U h `9 n/ t
ask turtles [ifelse show-wealth?
* `0 f& f O7 R2 B8 H7 F A+ i5 L [ set label wealth ]* T' }7 Q* h' ~# D- M1 m
[ set label "" ]]
5 R; W' n/ T% E' J* Xend
k/ x8 c" A, M5 n$ g% r7 c7 _) K: Y3 g- Q4 [' Y
to go8 M H! q1 C7 T* k
ask turtles
$ u4 T% e1 Z6 W0 ?0 t @ [ turn-towards-grain ]
9 ?* r: T$ n3 q! X, o7 P o harvest" A3 e( ?7 _5 k J: G3 s; E4 Y3 T
ask turtles- ?. U! N( M- v V2 |4 |
[ move-eat-age-die ]& a. |2 `0 J- ^& b& T: n
recolor-turtles6 b. S% B2 D K5 N
if ticks mod grain-growth-interval = 0
5 m: P" J) a% c6 T( k1 f9 W6 B [ ask patches [ grow-grain ] ]4 C% Q; @* c' A# N$ [) I
# C' C5 ?( t) l# W, X8 g if ticks mod 11 = 07 |: Z$ c5 \2 E6 H! D6 Z6 I
[ask turtles
( i3 k; e( x" M( e" d, [7 V% L [ redistribution ]]' I% E3 z4 g" H( @5 m
if ticks mod 5 = 08 `* r! m9 x# [1 p0 o. i& [% y
[ask turtles
1 z% _0 l4 d6 ^$ l9 ]9 r* [ [ visions ]]
& h' e7 P/ P& ` tick$ [1 b- ^+ ^0 M% ]5 x+ n
update-plots
+ u7 o' Z1 F/ _ Jend
8 v! X1 @8 l' j& K- ~! n3 p9 J' b Wto visions
( f- `2 n- ?' B. T set vision vision + 1
$ Y1 F# m0 X# J- i: [9 @' dend* y9 o2 _6 |% |! N% c
3 z6 } U3 e: Q: S1 G F. q+ b# L8 m
; |) ~! U! @ z) Z0 i$ f+ t; Xto turn-towards-grain
: q9 X& i1 i& O, B0 _ set heading 04 K; y1 a5 O. c/ a6 Y' V, F7 y
let best-direction 0
* m X7 T+ A7 `( M$ a( {* m( B let best-amount grain-ahead
9 d, v, H9 N) H4 {2 I9 I: E+ ?; r set heading 90
) K8 O7 V0 `7 x: m) J if (grain-ahead > best-amount)0 f# O3 J3 y9 b" {( ]4 A
[ set best-direction 90
% {. Y( H/ _4 V: F& A set best-amount grain-ahead ]1 m# D4 t' o4 ~! v1 r7 h$ _3 `
set heading 1800 m) [! S/ @ Y$ h5 p' h5 U* Q
if (grain-ahead > best-amount)) s& K! r) l9 j$ o2 I' C# X6 k
[ set best-direction 1809 }1 x( C* D6 D
set best-amount grain-ahead ] s/ C8 S, [0 H% K; Q$ h" E
set heading 270
4 l' v" J% c. |8 [# s* y if (grain-ahead > best-amount)
! r. u9 c) y' e; _$ W [ set best-direction 270 S6 w1 w; @: A9 P& q( K
set best-amount grain-ahead ]
: f. M8 u+ E% {! W4 S set heading best-direction
; L6 O: o0 I( _9 Y Lend4 h8 |( v0 C3 \2 F
9 e% N! l/ X' Z& K# M* g
- ~+ @4 }. E" s: L2 ^0 A% Yto-report grain-ahead 9 `' i) c% o$ b* F
let total 0
8 W2 X; M, K2 z% T2 r, }; _6 ]0 g let how-far 1
: H6 B* @+ y! ^7 P repeat vision
; S2 a0 w L7 d8 }. H; m& z [ set total total + [grain-here] of patch-ahead how-far# h! x( _9 Y+ v M8 A- q
set how-far how-far + 1 ]
: }+ e; z2 v# y p ^; h# e; K report total; p+ e/ |) v6 i1 ~
end/ |! s7 _% O5 W1 x8 B/ u7 e
, i% @" ]- G7 V' b1 a0 c6 G' k
to grow-grain
. H/ p' e1 O+ N, J if (grain-here < max-grain-here)8 V2 s0 e. q- w- {) |. G8 F
[ set grain-here grain-here + num-grain-grown$ [) h$ h! [# |, v% U! C5 ?- n
if (grain-here > max-grain-here) 8 n9 T! \* ?/ U
[ set grain-here max-grain-here ]
; `4 f0 ?" I2 M( g, d recolor-patch ]
* {# i, f# M1 Y" [end
& l3 O3 m! {- |/ _+ Q# U" Uto harvest
4 i* {+ t& [# B; b9 R' k ask turtles
- X8 s3 W7 H& L [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
- H( J9 s( W+ w+ c/ O ask turtles( `, a" Z' ]; a. G7 |6 X
[ set grain-here 0* F5 t# M/ h8 `/ A+ L
recolor-patch ]+ ~# g7 \' A8 R) Z
$ ]) i5 A5 |& T1 Y, i: }end
6 x. E F h& a# k9 ~
/ r4 i, a' X# ato move-eat-age-die
b: w- f( q) m( @- D# d fd 15 U3 t( ^. U) p
set wealth (wealth - metabolism)8 \4 _# I! |% v z. n, l4 {3 A
set age (age + 1)
* q. s. V$ ^* Q* | if (age >= life-expectancy)
# e( |( a% `5 l9 k( E1 q' x [ set-initial-turtle-vars-age ]9 N) J0 E8 j) o" Y* P0 D! \1 c; L
if (wealth < 0)
2 t5 q& ~$ F! f6 q; P8 @1 Q [ set-initial-turtle-vars-wealth ]4 E) C" e- J$ G7 N0 Z( D6 H
1 P1 p7 i, J( d
end+ [& ~5 `, g' Y+ K8 w
$ e1 w2 c2 |! b4 L$ l! X& ?
/ G" o4 z$ M+ M
to setup-plots s4 F8 L# R/ T* F" o y4 U5 J
set-current-plot "Class Plot"
+ f- N. v! I# { set-plot-y-range 0 num-people
8 A: G" j9 ~1 P/ H9 v set-current-plot "Class Histogram"4 S2 J/ q+ \1 f1 a3 a% F
set-plot-y-range 0 num-people
5 M- {# U0 T3 j4 c1 B! Q* F) G* Iend
3 I6 l0 n8 ], P* J
6 G+ w9 ^, e+ H9 \+ {& rto update-plots
# h4 Y2 T0 Q: a. @# H* W update-class-plot0 J& a' t' L; C P% `8 L& c, A
update-class-histogram, q( c5 E* T k H9 z+ \8 V0 A
update-lorenz-and-gini-plots
) t6 n& u7 {8 W2 S" Vend
; ]* ~+ q. I$ _1 `, A
& v4 w) @" |( J fto update-class-plot
" V1 q( ^/ z% K# V8 `- i# Q* O set-current-plot "Class Plot"+ m" ?1 p& i3 U' `: T1 b& ^# Z0 W
set-current-plot-pen "low", |) z4 ~- I/ \
plot count turtles with [color = red]4 B4 L y' G; l* Y) y, V
set-current-plot-pen "mid"3 }3 c, f. V1 w4 C8 z
plot count turtles with [color = yellow]
; n6 c4 s* P8 }. A! u8 r5 I set-current-plot-pen "up"$ S1 @$ l, n3 W* b7 ?" D
plot count turtles with [color = green]; x3 i) Z0 H6 d7 d% ]; [4 k' s: |* M
end
+ C2 n/ g+ a. i- J$ ?- A9 j8 L' P8 z6 n7 M9 L
to update-class-histogram
O; d$ z7 x! S g/ y set-current-plot "Class Histogram"
. y* c0 Y6 o; {! Y" D plot-pen-reset; Y3 ?% d) ?- O9 N' f
set-plot-pen-color red
K4 x0 A9 X. X9 {3 K plot count turtles with [color = red] I8 m- N8 l0 ~4 y+ B
set-plot-pen-color yellow
1 e d$ `: i0 X2 B3 y plot count turtles with [color = yellow]
* V' x, [8 x6 [ {6 P9 E3 g set-plot-pen-color green
% G! s N+ t( a: d plot count turtles with [color = green]: M. g7 n* Y! S0 K: f% s
end7 Y4 |4 G' e& B
to update-lorenz-and-gini-plots( H7 E" e m1 d' v* L
set-current-plot "Lorenz Curve"
A \3 Q7 c9 u6 t clear-plot4 [1 t. S( O4 Q1 ~$ }
. t3 ?5 I4 c) R! N7 n# l set-current-plot-pen "equal"
- ~- w# K$ ?1 D/ D! [3 ~ plot 0* h# P2 c, c# H6 S+ n" \+ c* K9 s' g
plot 1003 b( N& ~( ^; v8 {( X4 G9 N) [
* Q% w0 {& |4 j# N `( ^4 g set-current-plot-pen "lorenz"
3 x, b/ X+ Q' w, i set-plot-pen-interval 100 / num-people y( p9 k' f0 S& [' f9 \
plot 0
" |: `* E t- @6 K) ^% E% n
( ~9 G! w# I% w% r let sorted-wealths sort [wealth] of turtles
# Q& R: D( t2 C9 Q! z: ` let total-wealth sum sorted-wealths! u7 E0 X; F( R# ^7 r$ m
let wealth-sum-so-far 0
) t' j# D, F0 O let index 0
3 J$ Z- V1 A- I z- o6 \ let gini-index-reserve 07 R: e7 i1 ^3 W$ L+ W3 C
J7 v( _4 \2 j1 b$ o4 j9 m+ d repeat num-people [
' Q/ L$ ~8 V" t& f1 y* u% O" \ set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
. \7 X& A- q, ?! L3 C8 m2 L& | plot (wealth-sum-so-far / total-wealth) * 100: a. J0 e$ c a, r% {2 C
set index (index + 1)6 I/ C2 {( o8 Y: a1 B
set gini-index-reserve& h p9 _2 Y) K( I# w/ B% ]: r
gini-index-reserve +
$ R) k5 ? B D# e$ Q# ~- p0 s. ?# v (index / num-people) -) n1 O* ?1 u4 k8 g. T
(wealth-sum-so-far / total-wealth)2 N) U7 L7 y( n
]7 o7 b k5 A7 m5 _% ^6 w, w
$ V$ P; d% e$ y4 s* V- k set-current-plot "Gini-Index v. Time"
# L; W A! `' r* I7 ]6 u plot (gini-index-reserve / num-people) / area-of-equality-triangle: Y7 M: V" D# A7 f! L, U
end
" ^2 R" U$ A( @$ E$ H- }to-report area-of-equality-triangle M9 ?2 i7 u' n6 ]' x% A/ z
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
, B) a7 j* ?$ Iend |