请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现9 p3 y* Z4 C& N) X0 a5 X
globals
: F! v" B7 O7 Y$ f[2 o& w1 O5 U, y9 [
max-grain # a2 z. v: |* U
5 f. H+ u, x! z# D) S( A
]
/ e) t6 s; P9 w+ p% O2 m: ^ Z; }& e
patches-own. B( L( t, D3 l/ J# W4 t- ]% t
[6 y& D8 K1 y3 `# N; b3 T% Y
grain-here & [. T' N. U" ?
max-grain-here
/ F4 Y9 _7 S& b( n1 y]) V8 F( O% q( Z
% N' _7 ^6 X {, Y4 S6 s
turtles-own% ^2 y+ L* n' E$ d
[
5 J5 u6 j& O ?2 V4 I age
- ^: _9 `: U }/ U wealth . V& X4 B8 [$ A; B
life-expectancy * H ?. T' s+ R+ M! p: S
metabolism 6 u5 p8 r" Y4 }( u
vision% R( ^* y1 Y% ]! j; H
inherited & h, |8 B6 q, L+ M/ g
]
; ~; P1 u1 S* z* f+ V/ E
, h! a& h& c/ X0 q
, r0 c3 W! H# m! t: X5 p+ lto setup
4 _2 {2 f1 x; U! f9 u ca
9 j. s; E' {# R } set max-grain 50
" O/ y' ]$ s ~" |! x" Z* h5 g: \% w setup-patches
: F& q* p& m B! W setup-turtles
5 `4 L2 I( a( F$ T4 Z% Q setup-plots
- }2 D7 Z1 y { update-plots n7 X! x" G1 O
end
# y# W. R) w: s7 b8 [" J( b2 Sto setup-patches
: S8 ]8 ]0 j) T) I3 y* ] ask patches
& R+ Q# d% a3 ^+ S3 g+ }, w0 m [ set max-grain-here 0
9 f" v% v4 {' X e i1 r/ _ if (random-float 100.0) <= percent-best-land+ b1 b# f4 {1 l8 F9 a# m
[ set max-grain-here max-grain
' B$ B: j0 x3 \# |0 ~/ N! { set grain-here max-grain-here ] ]
: V2 I, \+ k* `8 I& `2 U repeat 5, e R ~" W G' n
[ ask patches with [max-grain-here != 0]
% Y/ ]2 L" g$ p1 I+ ] [ set grain-here max-grain-here ]
: u, l6 X/ G" z+ I" `% i diffuse grain-here 0.5 ]9 [% e- A: | U1 j" `
repeat 100 d" h, b/ w/ r2 j4 T
[ diffuse grain-here 0.5]
( j- y. e4 G+ ^* r3 o9 X ask patches5 S+ }1 B" H3 ~
[ set grain-here floor grain-here
3 \- q8 q2 f1 w$ p* o: D set max-grain-here grain-here
; S2 M8 I% E% m3 Y5 o" h recolor-patch ]
1 G: G' P! O4 Z ?3 kend, Y8 p9 Q* J5 e* _5 U3 V v$ ]
to recolor-patch & k9 |4 C6 j9 H; p$ u
set pcolor scale-color sky grain-here 0 max-grain# Y5 Y- A, f5 U4 f3 i
end* n1 O0 o7 ~) B( w0 [% H
to setup-turtles
, x& l7 h# c4 _2 [ set-default-shape turtles "person"" p) _' F* l4 c( _: {
crt num-people& W1 ~1 h( ]. O9 y4 P* e/ @
[ move-to one-of patches
6 x0 }5 g& L) o9 p& L set size 1.5 1 O" ]9 A. }! ^3 W0 ^1 a- ^
set-initial-turtle-vars-age2 D7 k/ e/ o' Z" H
set-initial-turtle-vars-wealth
% {4 N$ ^1 Z& I- b set age random life-expectancy ]
) v/ a5 h, s9 b! |- \ recolor-turtles( u9 r% s% D' S [4 z1 t
end( E; n I1 v! I* y
' t3 |& y$ o. i& `
to set-initial-turtle-vars-age
. ?$ A/ |2 ]% n1 J* j5 F9 G1 | let max-wealth max [wealth] of turtles
% a9 p: z- A/ `7 x4 a# e5 G* X1 D0 q; J , T' \8 [3 O7 e6 V6 K e
ifelse (wealth <= max-wealth / 3)
1 a# B# k% w; ~' D. x [ set color red
0 i% h2 d4 Q; C3 H! Q) `" J9 L set age 0
1 Y9 H7 d4 O6 z" T9 H! O8 V P face one-of neighbors4 # U& F. d8 y+ y, R
set life-expectancy life-expectancy-min +
# T% h+ p# t+ R5 Z2 {4 |$ g random life-expectancy-max 3 N* e+ M- B9 \0 `+ h
set metabolism random 1 + metabolism-low
; q# i% y# _, l% K set wealth metabolism + random 30
, X- e0 I' z' w! s4 n& @ set vision 1 + random max-vision2 g" T/ {% o" c0 K5 L
set wealth wealth + Wealth-inherited-low ]
0 z1 A# L$ b. l _ [ ifelse (wealth <= (max-wealth * 2 / 3))8 _8 I+ B2 b. X+ [0 `! X |
[ set color yellow
4 C" x; F) {3 k4 _5 z# F set age 0
# P0 f1 y% |0 _, R0 h face one-of neighbors4 3 _+ D L% w3 P3 _$ l
set life-expectancy life-expectancy-min +2 l4 b9 \! f! q$ m% X
random life-expectancy-max + 1
1 S& d# p* Q- z! ?' g+ @ set metabolism 1 + random metabolism-mid
, b. J1 f$ V d set wealth metabolism + random 30
/ C0 m1 k* n) n+ G& ~; o: P set vision 3 + random max-vision
) ^; p/ \9 a) I7 l, c* P: j- r set wealth wealth + Wealth-inherited-mid]1 o+ \& i0 v7 G! C3 X2 t9 V
[ set color green X$ t" B. |1 D |
set age 0
( N) \ d+ ^( i face one-of neighbors4
3 `# I5 `5 O, m set life-expectancy life-expectancy-min +
. p7 Q/ ~" A, o0 G# a Q/ C random life-expectancy-max + 2
7 G* }& p# M9 a& I% ] set metabolism 2 + random metabolism-up/ r9 u0 k- Y5 z9 v5 I3 o
set wealth metabolism + random 30
4 A; H; B( i; |: q: ] set vision 3 + random max-vision
! o3 Q3 s2 C6 ?+ i) I; [ set wealth wealth + Wealth-inherited-up ] ]
5 n, P" C: [0 z$ q/ P) k
$ y7 y/ u, b: G- {end
5 ? k6 C- U% {1 m* d/ Mto set-initial-turtle-vars-wealth" A. h9 M' d! t
let max-wealth max [wealth] of turtles2 @* r0 v7 m& q7 h7 w! Y# t7 M& j
set age 0
$ L9 o; Y$ p* | face one-of neighbors4 ) b. l- P y- Z3 [
set life-expectancy life-expectancy-min +
V' C* M' D5 |% O4 ^0 _ random life-expectancy-max & U% q- A! ?; Q& m/ @
set metabolism 1 + random metabolism-up
' O; h# t5 J$ n# k% l set wealth metabolism + random 30
7 ?' o& ^- {) G5 g5 }; i& x set vision 1 + random max-vision 2 ^; W' N& [: L/ |& q" Y
end' `: q4 K6 @6 z. N# B0 i6 u
to redistribution5 w5 V) w( I& t6 R
let max-wealth max [wealth] of turtles
" n* x$ A2 i2 J0 O; `let min-wealth min [wealth] of turtles
7 P0 D4 [' H5 J& aif (wealth <= max-wealth / 3)
U% X' ]7 O; n [set wealth wealth + Low-income-protection ]
( }5 r+ t' ]) q$ d- ~; Bend
% B2 ^& D0 Q" H" s" p , q9 K0 k% K- A* P( L, H; U
to recolor-turtles
+ Y' l+ W9 V( [6 c let max-wealth max [wealth] of turtles
- S5 P; [0 s$ N, q" h( r ask turtles
$ w+ }$ v: q: U) W8 {: }" q, E1 e [ ifelse (wealth <= max-wealth / 3)
' j0 c" g7 S( A/ \6 { E [ set color red ]7 z4 B& k3 z2 D P
[ ifelse (wealth <= (max-wealth * 2 / 3))) ]2 `7 K1 _' W8 t0 L6 F4 I
[ set color yellow ]
$ |! {" v! A- z, I! @ K( Z0 Z [ set color green ] ] ]
4 Q0 J; y9 |$ q0 ]7 Y9 v ask turtles [ifelse show-wealth?
; h; l# b/ Y W! }. R* h3 c [ set label wealth ]+ D+ I- F. `1 ~/ i
[ set label "" ]]; }4 P. g/ Q9 f9 r& g* q; U
end) q l3 _- e8 }
3 ^. ? v4 ^: ~' k- ]* @7 Q8 x$ K
to go- p( h. u/ ]3 U3 l# d
ask turtles* c6 o! R/ W, t9 w$ P
[ turn-towards-grain ]
3 t% s% V4 p+ ]$ X9 I1 z* w" r6 j! u harvest6 \5 g! W; V* t) V
ask turtles8 O9 b3 t" i$ x5 t9 [! u
[ move-eat-age-die ]# t1 @9 p" A1 o4 I! u% ]
recolor-turtles
; g7 V, a. O0 j6 q if ticks mod grain-growth-interval = 0
4 F7 k' G* O6 c+ r! P [ ask patches [ grow-grain ] ]
. y* }3 [5 O# A1 u P
7 M9 t0 y$ ?/ S( X if ticks mod 11 = 00 m6 C" S8 j9 o# T. a8 w
[ask turtles
! z: O% {8 ~5 e* y/ K" j) {4 U# H7 z [ redistribution ]]
& C: t2 r# M, n4 Y if ticks mod 5 = 04 W5 f* K0 ^6 I$ p
[ask turtles: ]+ P. K2 `) i6 _- h/ z; Y! a7 {4 W
[ visions ]]
' ?& k- W8 |: F tick; v6 j5 C, l& u0 Z: i8 Y
update-plots D5 ~3 v) O* X9 G7 t( z6 u4 ~2 V
end S: S0 A8 c' _- `% F' |0 Y! ^0 s( }
to visions
2 p! d$ P( d/ p set vision vision + 1
: q( u6 F' O$ @3 {end
9 D2 f+ R8 K1 e6 v9 M0 Z8 y" u4 w7 _0 U( W( X
9 u) j" i) R% A+ X' r1 P6 h+ I3 ]% J6 A" w* j2 C
to turn-towards-grain
: n$ Z/ c$ M+ S8 `$ D7 A" z t set heading 0+ z6 a! K% ^0 A* r
let best-direction 0
8 { s3 [+ X* R6 t+ f' } u let best-amount grain-ahead
) b: W2 F$ S' p& h' M5 w+ B! k6 F: ` set heading 90
, E% C, m6 V7 ^* X if (grain-ahead > best-amount)
6 s1 d9 S( M; g# V4 \ [ set best-direction 90
$ K: v7 W& W9 N' f9 h- b+ R set best-amount grain-ahead ]
7 O F6 B; V* c5 q. w# { set heading 1808 z, r# M0 c" c+ r
if (grain-ahead > best-amount)2 q9 i% O1 B0 w
[ set best-direction 1806 x$ a9 M# f7 ^6 `
set best-amount grain-ahead ]
/ g$ j0 Q# H, J6 [: N, g7 @. b set heading 270
! ^) N ^' [$ z% U6 |5 t/ {3 h if (grain-ahead > best-amount)& @# X6 K* Y& d( u/ w8 }
[ set best-direction 270" r- x+ j2 n( D i# s( U
set best-amount grain-ahead ]
9 z$ ]6 L& a+ d' B3 q set heading best-direction
% V9 Z: ?. Z: |# X9 y% nend
: l( L& e$ {) v. C( m f
2 d" P* q( _2 |1 _# m; W! t9 t+ b& y! u5 C: v
to-report grain-ahead
/ b8 {* G" D% B$ T: V( x let total 0
4 ] r( v2 E' ^1 ]- E9 M; g. g let how-far 1
4 r6 F& [3 e3 Z3 U* B repeat vision
8 f. [0 G* a2 ] [ set total total + [grain-here] of patch-ahead how-far
, s2 \- t0 P+ n$ ` set how-far how-far + 1 ]
* m0 C0 P6 a$ y/ o1 d: U. O report total/ {% a1 y$ U, O" G7 u! s7 P6 E
end
( ^' {0 S% u& E
5 E t0 `/ J; N" V# }to grow-grain
3 [+ J1 {+ @/ c' p/ O |' I! A if (grain-here < max-grain-here); S! A2 U$ V" y- x5 G9 ~- ?4 `
[ set grain-here grain-here + num-grain-grown
, u/ N) d3 I/ }8 O: [% ~ if (grain-here > max-grain-here)
R6 E; n4 |0 _ [ set grain-here max-grain-here ]
0 [# ~+ W2 \% }! }5 m- u recolor-patch ]
' X# z7 k8 ^, a$ u% [: u7 c* k$ Iend
! o; E$ Z1 c5 y9 Sto harvest
1 P1 A# b, o: k) E! k. w ask turtles, x+ G! x$ p5 |% J. N
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
0 x+ M$ }. l% p7 ^& q- B9 n ask turtles
6 }" ~9 B/ B4 t0 [1 _ [ set grain-here 0
1 p5 T2 t$ L2 X' i; |8 s: h recolor-patch ]2 E" H5 s" o! N4 v1 B1 V0 [; m" K$ P
3 X$ {# {, ?5 g" `# Tend
' g9 U q* u6 }% |5 }! L6 C# K
) q# J; F( Y* E' Vto move-eat-age-die / Y5 g- r) _/ K
fd 1
8 x4 Y4 L D0 f& F" F set wealth (wealth - metabolism)
5 L# c+ B i5 c" i; q7 ^( ]' x) [ set age (age + 1)1 G( ~1 b: b; X! {+ t) T9 \& G
if (age >= life-expectancy). P% w, T* M0 @2 u3 g: z
[ set-initial-turtle-vars-age ]
: o: V- c" v [/ B, J if (wealth < 0). O/ ]. ?' d5 w" c
[ set-initial-turtle-vars-wealth ]9 y6 s: G' W4 t+ s# O
1 c0 C! f- D( }1 G+ Send2 ~% _7 |2 d( t
; n' ~2 V( e' B) ~& k% y2 K4 E
4 e; l9 b! n' T3 s sto setup-plots# p! [8 b- E0 W" F0 e
set-current-plot "Class Plot"0 Q/ a$ J% T8 s5 [( m/ B/ q) l# z
set-plot-y-range 0 num-people! _4 W# {6 o+ X5 T' i
set-current-plot "Class Histogram"- _+ S! A9 T9 Z8 |% r
set-plot-y-range 0 num-people1 R" f, d0 R9 Z2 w1 Z# }& X1 t
end) H: V( Z r% r# {9 l
: s3 _6 k& N+ ?& oto update-plots
$ H. U( p! c" E+ a" \ Y9 E update-class-plot0 x1 [7 i3 b) w2 `2 ^1 M
update-class-histogram
+ t0 `5 L/ V2 X+ u+ }9 r. e0 h s update-lorenz-and-gini-plots
/ m% q8 F" F4 wend
" A/ B. w$ t7 ~# a5 p6 L7 Q V$ W0 p0 ~% }. F
to update-class-plot
& a7 W. g, p. \' `( v" r set-current-plot "Class Plot"7 w ^ U! x7 n1 H3 l6 X9 \
set-current-plot-pen "low"
8 E: j+ y! _/ y0 W* S plot count turtles with [color = red]
% j) W5 H* `: Y( R9 X0 E5 Y( ? set-current-plot-pen "mid"$ Y. O ~+ O4 V6 P3 A
plot count turtles with [color = yellow]+ D G% o' x3 f6 a8 M8 F
set-current-plot-pen "up"
: m8 x0 g9 z- N plot count turtles with [color = green]
3 Q; y$ z' P& M: v0 kend+ z/ _( q, {& v( Y' c5 z
; W! O \3 E& Pto update-class-histogram& ~( p7 A" A! A9 Z$ N1 t
set-current-plot "Class Histogram"$ ^! O( p$ d! S8 | p
plot-pen-reset
" E" I1 e; m0 n5 |; a set-plot-pen-color red* r0 I5 i# |2 r" a0 U+ d/ ], P* {
plot count turtles with [color = red]$ W3 S2 m; L" e
set-plot-pen-color yellow% R4 t1 {! ~; Q" V
plot count turtles with [color = yellow]
$ m+ T1 P" u" u+ J# A set-plot-pen-color green
# D0 Q: i4 K" P' _& N8 G/ T& k plot count turtles with [color = green]
2 f3 V6 i4 V; ]end V4 r; m5 C j4 g1 F
to update-lorenz-and-gini-plots2 v3 A3 V4 P5 F0 R3 V5 @$ A) O4 |
set-current-plot "Lorenz Curve"* h5 b7 P9 D' N! O7 k
clear-plot
& m7 U/ f; r$ f+ }
6 [9 V. ]* S: j6 o3 W* F% Y9 \4 y set-current-plot-pen "equal"
- d+ ^5 H" f6 t( P( f plot 07 E" ~- i, @- _
plot 100" U ?# n; |( u9 ^/ l! I" ?
. O( A" {: J9 U3 W0 A set-current-plot-pen "lorenz"
8 n1 `/ G8 a. E. V# W9 x set-plot-pen-interval 100 / num-people. D3 ] a! F- ^( m. X: ~) Z' |
plot 0
- w4 z R9 s6 t; R5 r& N& C* |1 h
; Y& ?7 q' S( a4 K4 U* S: G R let sorted-wealths sort [wealth] of turtles
& n3 Y* N) r0 r3 ~, o1 ]6 a let total-wealth sum sorted-wealths
8 b, h; a$ A: O4 ]6 b" T let wealth-sum-so-far 0
# Y. _7 \' d. j let index 0: k: C7 e8 S( O, P
let gini-index-reserve 0' a3 ?- Y# z4 r: Z. i! E
2 z$ D$ q& R, b5 t6 ?0 ~. H2 i repeat num-people [. q# L" Z( G5 ~
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
( v7 b: a" U# z2 }6 F- ^ plot (wealth-sum-so-far / total-wealth) * 100
5 R1 ^: v) c0 O set index (index + 1)
# g! n) G- \, ^- P6 T3 L& ` set gini-index-reserve+ B' s# e6 h& M i. v) u
gini-index-reserve +0 r) C7 K. S1 K/ g
(index / num-people) -
1 ^2 m% R7 z2 M- d( x y/ A+ X% ~ (wealth-sum-so-far / total-wealth); F4 m! m0 S3 ]' j0 B
]1 M$ g9 s0 f& w! b3 ~( c* ]$ ?
, C/ ^1 c$ I+ c" e set-current-plot "Gini-Index v. Time"& c. L5 I6 ?5 i& D
plot (gini-index-reserve / num-people) / area-of-equality-triangle2 M/ l# [2 |% d: e9 C: H
end. l# G) u% t$ `: O7 H' j0 ]% P
to-report area-of-equality-triangle$ c0 ^& G8 A0 N
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)* A9 R( {2 F; i7 L; H# Z
end |