本帖最后由 GJM 于 2009-12-5 21:43 编辑
1 Z4 {+ m5 f0 k5 q
& ~ J) b, Y% m/ y3 x底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去9 j9 x# k: M5 c
2 V" p; \) R+ k
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!0 d* h) u" J K1 ?7 U5 f% D0 Y P9 ~. n
2 ]. L, c; c+ N. I& @--------------------------------------------; n( o6 B$ e9 v/ ]
begin P_something arriving
% h8 x0 X3 U z move into Q_wait2 [# |3 D% x1 E/ h F
move into nextof(Q_mA,Q_mB,Q_mC)
2 N$ G! P7 x6 `& \ D* o use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
: X# K0 G* y3 g" `; Q5 k1 _$ j/ | o Q send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
: l. u5 a& D' i$ u) ^9 F6 Y5 w send to die% H3 w4 X o0 Q- M9 i
end
% l9 f1 P m, a8 L! m 5 N' }' B$ E0 l' O- ~8 Z* v ^
begin P_mA_down arriving
2 I# p& N6 Z I5 f5 H+ s1 Y j while 1=1 do ) c0 |! p. T# k% z5 J
begin
1 F6 S5 h% U( w wait for e 110 min. ^6 K" B, \+ t' C7 x; b! G
take down R_mA7 T1 v$ n) ^6 @9 f# o" ^4 G, z( x
wait for e 5 min: L% W/ Y" ?, _4 f
bring up R_mA' v% K" I; B/ C; {" R
end# N& {, j6 v O* P8 N9 `$ I9 I
end1 v# n. q! u- C+ d2 a. M! k) k0 F
" }/ [# h( F* P; B9 Z$ vbegin P_mB_down arriving4 A: R! q3 k- }- O. }& `9 v
while 1=1 do
9 z4 p+ W4 C& m# y. V! G' i9 [0 \8 q( Y begin; ~! q0 b! M5 j6 A- N- n/ J
wait for e 170 min
1 G: R5 R) z; v1 a take down R_mB: m4 ]- U2 u8 f, a, w
wait for e 10 min
) h# h1 l; i0 s; L bring up R_mB
: c2 p* e1 Z/ ~" X0 c2 U& k" i end. q& t0 R/ Q( o* `0 M
end
: X. ]; x6 O+ D% e( z: w
8 Y- @8 h F( P( y7 Xbegin P_mC_down arriving
; S4 q5 b$ M/ ~- W while 1=1 do
% N1 v1 a# H' i' }0 X: X/ h begin4 |5 A, g2 A/ F( h5 u3 W, ~; ~- P
wait for e 230 min( j: V7 \/ q0 S( ]
take down R_mC
8 E% n8 a$ f! i1 _# g- A/ j% { wait for e 10 min' ~- e4 I5 K1 E' E. }" Z/ w! B, I
bring up R_mC
9 V! Q: P9 X" ?3 B end, {* |" E7 W5 D- G8 c) ~! m% B
end
1 Z2 S6 t- t0 f ( u9 r7 Z* N! U6 l/ L
begin P_mA_clean arriving
7 g) {; ?) O$ V) n, ~. O' W while 1=1 do
# ? E& A' Y& P" n- V( \* x) ?1 X begin
1 {9 T2 U' R7 K( C! C4 i* e wait for 90 min
" P9 N2 D# \8 O- d7 | } take down R_mA3 Z9 \) ~: o+ U. S) @+ K
wait for 5 min- v6 c/ E1 f$ T$ O: I7 ?
bring up R_mA% X' v9 s% J3 Y/ m
end$ s: W' p( a0 j; B$ \" [
end
9 v/ }7 P3 V& @: I
) e0 X( @6 y3 `; f, qbegin P_mB_clean arriving# Y* W: |0 L; r7 I2 M
while 1=1 do
1 b& z7 r5 _" `6 q P5 T begin; |$ ]- @) f$ z( D
wait for 90 min' T) X3 I4 j6 v2 {1 B8 g) F: g" J& D
take down R_mB# H9 O( \) G1 L3 v; I/ t5 _+ _
wait for 5 min
# G* M! i, P1 _ bring up R_mB" j4 x* A- @9 a- y# L2 L
end
0 Z- {- {- |5 y; X5 T1 ^+ Aend- Q" j$ O, {, Q' }4 W- z2 R O& f
# U9 G7 ?0 F' X: I! ^
begin P_mC_clean arriving
. e# L3 U6 S+ m" d V while 1=1 do* O1 L& Q! ?3 {2 i) _1 C9 n
begin$ Z# s9 s- X, P6 y$ E/ v
wait for 90 min( i9 ], B# u; u" z! ?% n) h) j
take down R_mC
2 s# y$ u; s1 S# M wait for 10 min0 H9 a. R; t9 m: h$ S, R
bring up R_mC& r$ G5 V% c0 ?' B; B
end
: z2 F0 _+ z2 H1 @8 ~! Yend
$ {' l9 M0 B, B3 A8 U; T; N, a7 E----------------------------------------0 m& c+ t1 a& E6 k; L2 t5 |0 U8 U
( n* J6 F) n% @1 N
Exercise 5.9+ H6 A: q2 J. U- D& t9 t
5 X- R9 q- B* l2 v/ s9 V: @% n1 V. B) ?# `* t$ [" ~0 ^( t9 O
Create a new model to simulate the following system:
2 K! H6 O1 U% a# w# YLoads are created with an interarrival time that is exponentially
! R% ~# \6 y" S# s; x+ l. \$ Fdistributed with a mean of 20 minutes. Loads wait in an infinite-
K2 y" X9 h/ ?. t0 Pcapacity queue to be processed by one of three single-capacity, - a* n: f& n5 |3 i, `1 Y4 y
arrayed machines. Each machine has its own single-capacity queue ( L* F# z1 v, C* m1 g( R
where loads are processed. Waiting loads move into one of the three
- J& F5 ^- _4 r% Pqueues in round-robin order. Each machine has a normally
! n5 |8 P/ E1 [distributed processing time with a mean of 48 minutes and a standard 7 Y4 ~# P+ E2 `( `. J( O+ t
deviation of 5 minutes.
0 G3 D0 W% ]+ n- w" PThe three machines were purchased at different times and have 9 ]5 G; ^3 O9 `0 E) p8 `2 j
different failure rates. The failure and repair times are exponentially + G* A: s! {3 x) |) b# l3 M
distributed with means as shown in the following table:
8 m+ C, t b# r7 P8 `8 C' sNote The solution for this assignment is required to complete
, y6 d0 G$ h4 texercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
. i- R$ f+ U4 j4 n* O8 _your model.
7 A+ T; l# o+ A V- y; d6 Q( }# ~, d- x( l1 A
MachineMean time to failMean time to repair
0 j1 X0 A3 h$ jA110 minutes 5 minutes+ p. r, W* P! n# e4 l
B 170 minutes 10 minutes4 K: T; E8 B/ R" l1 m# n
C230 minutes 10 minutes
/ N* {- h+ f, ?9 @ a- J$ k8 ]
; ?6 ?( l8 C0 h1 @& A/ pThe machines also must be cleaned according to the following
' a" O, Q/ Q+ Tschedule. All times are constant:
* `8 g3 Z4 p" k6 B8 z
% ?" @9 l# N7 M8 d3 KMachineTime between cleanings Time to clean' T& [: L {. I2 y* S
A90 minutes 5 minutes
; y: @/ e0 _. s! J8 v( ], b' mB 90 minutes 5 minutes2 @4 }9 V/ N1 T9 }
C90 minutes 10 minutes
9 T( [+ B' b. t, T+ A5 Q7 e) l5 {
' l2 f& p1 }! [' }6 N7 O4 x6 ZPlace the graphics for the queues and the resources.
% A* Y A5 I! jRun the simulation for 100 days.* X4 f# y; o- i" w/ c) ~' K
Define all failure and cleaning times using logic (rather than resource * C7 c" Y- J& t! _1 i
cycles). Answer the following questions:" H( k) C8 b7 P$ l
a.What was the average number of loads in the waiting queue?. g) c* M3 H# q0 A# {! k
b.What were the current and average number of loads in Space?
' @4 B7 n% m" D6 h9 Q1 m! sHow do you explain these values?
( z1 Z# R. {. [1 p( c |