请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
; t7 s3 a, i9 r/ uglobals+ X2 S8 g& F2 I5 |. T) H
[
9 P8 v, S. A) F6 \; X5 N/ {3 m. X max-grain
6 R9 w$ @) g9 M2 V( H$ I$ I* [; d( w# i- z* K
]' C2 K) t: `6 T
! U6 B/ p* l) f9 `patches-own
' C! W1 Y6 Y+ G, t5 J5 w[0 s( t D2 z! J0 x
grain-here
; h- a' n; S Z& n max-grain-here
6 N7 N4 w1 Y) W5 ]$ Q]
8 a7 U# [8 t8 T5 ~0 T4 X) p" v6 a: o' y7 L c
turtles-own7 s: L. u: G* h' Y+ J* T) z" v
[
( \* S) b( [. H0 e2 ? age ( g4 U: v& K2 m/ @
wealth
( { S4 e" R5 ]* o$ D' z5 D. W life-expectancy
: n! B: K K) A metabolism 2 U/ Q- p: ?% a, W1 P" ]% | L x
vision. x* `, i/ @, r) c
inherited % T& a3 k+ g5 P" v
]
) V8 V3 E1 m' P7 J3 }" r5 ^8 m4 F! m
! H! p2 g' S* Y" Dto setup7 z6 z. J5 L2 H0 T) E, G
ca0 p3 s3 t6 v! ~- D- I, }* F
set max-grain 50& @8 R' \; W. g
setup-patches
' i" L% @- M4 u% l setup-turtles
1 @! D, g) l, F- a8 J setup-plots( S; f3 Z& e" m7 ?0 S
update-plots I+ i7 o% N) F' o3 Z+ u3 W/ A
end
|' ]9 D9 y. j V% e% ]4 u2 Jto setup-patches* h S# Y* G6 G7 g3 A6 l
ask patches
+ ^: g3 v5 e! v [ set max-grain-here 0
) V2 U# e1 w0 I$ f5 i* q6 G u if (random-float 100.0) <= percent-best-land! |$ Z9 x2 B( Z4 N6 s0 ^
[ set max-grain-here max-grain
! O7 R- [7 ^, f9 z7 H8 T- G/ E; |% h set grain-here max-grain-here ] ]
" r$ f6 L3 f& _. p7 b repeat 53 h; Z5 g1 ~2 V# G5 a1 m5 G
[ ask patches with [max-grain-here != 0]+ L8 p( O, y; ~5 I& H
[ set grain-here max-grain-here ]! [0 ]9 n. w+ i7 @$ K
diffuse grain-here 0.5 ]
9 H) H/ p7 K9 H8 Y repeat 10
! i2 b# R4 d9 ?- z [ diffuse grain-here 0.5] $ W/ ^( f# @. x9 |) {
ask patches
' O' |: l9 s: C; B" C [ set grain-here floor grain-here
% ~* `- F r* O5 v2 [% B3 ^ set max-grain-here grain-here ) J/ y3 S* J) Q6 a5 M% r) q
recolor-patch ]' g+ ]. h" V; B2 Z0 f
end
9 ~( R. X H- L' b- W9 N# fto recolor-patch 1 W2 p% P/ Z& P5 h: f4 r& @
set pcolor scale-color sky grain-here 0 max-grain
; j6 u& W; S! h% o9 N/ cend- \* s7 z5 C1 s8 X H6 ~
to setup-turtles
; {$ r+ L: v* _; Y' O, K. [" Y! | set-default-shape turtles "person"8 b: o) y! p) O( s: ?
crt num-people0 j- r, r) F. W2 R9 O
[ move-to one-of patches 0 a1 e# d+ W* z# K( @
set size 1.5
: o o! d4 W; a5 H2 ]* w set-initial-turtle-vars-age
$ K7 H$ Y9 a$ i2 R, M set-initial-turtle-vars-wealth- j+ c" k$ T, T x& `& b7 d
set age random life-expectancy ]
* N8 `5 {+ D, ~" Q recolor-turtles
0 d2 |( \; E1 _* |. mend
( j9 e7 W7 W7 [; J& h" b! `0 X8 c& t
to set-initial-turtle-vars-age
2 i# W" S/ g; H. v. W4 y1 k) A let max-wealth max [wealth] of turtles
/ k" q. o; V- W2 D z* k . k/ l1 ]+ I1 [1 L8 a
ifelse (wealth <= max-wealth / 3)
8 X3 |' |7 {) D! Q* L [ set color red . I+ b& d5 [' F7 X8 F/ I
set age 09 u% |. O6 i2 A0 ~ e
face one-of neighbors4 + ]& s7 J/ Z; ?: x$ l4 w+ _1 z
set life-expectancy life-expectancy-min +: A1 X; r# P' P# q6 w
random life-expectancy-max
. k% J6 |( w& W$ l8 R. S: ? set metabolism random 1 + metabolism-low1 o* T2 [( M7 |; ~! T1 Y e) u
set wealth metabolism + random 30
1 n) {: x0 [7 @/ A2 s set vision 1 + random max-vision& F' n7 ^5 |/ @1 \" x4 w& R
set wealth wealth + Wealth-inherited-low ]
! X% C5 K8 E* _% y [ ifelse (wealth <= (max-wealth * 2 / 3))& G) K2 f% X5 J( {' _6 s7 X+ C
[ set color yellow 5 e( C- [7 ~- E3 @& O
set age 0- X! m; v6 S% a% R% @7 S
face one-of neighbors4
: m$ u7 i/ Q! @6 u) z set life-expectancy life-expectancy-min +
! _' P9 x8 `" w" H. R, L( z random life-expectancy-max + 1
9 x+ Q7 T! c5 j3 J0 \ set metabolism 1 + random metabolism-mid: N: l' W: _+ T
set wealth metabolism + random 30
4 q9 x: _4 |# g1 \/ s5 r& k set vision 3 + random max-vision/ O7 F. E9 z% o
set wealth wealth + Wealth-inherited-mid]* K* b6 d4 u' n/ }; \7 V
[ set color green ( u6 X& w0 } C6 \
set age 0
( K: l; o; v6 t face one-of neighbors4 - }& v- o u( R& B8 S3 _' k
set life-expectancy life-expectancy-min +
, C3 h3 `4 ]' X) c( v9 [ random life-expectancy-max + 2: L& P3 M" h! J% t+ D! K7 ]) D6 t
set metabolism 2 + random metabolism-up
" b) T9 n: O% w; G- b: \& L* \4 p set wealth metabolism + random 30
0 Y# N$ i: ]+ a3 i6 @2 e W set vision 3 + random max-vision, a, t/ s" j O4 d) Y0 O
set wealth wealth + Wealth-inherited-up ] ]
, ]3 ?) t1 i' Z8 ^# g8 T+ X5 x ! @( o" f0 k/ R3 ?4 i
end
! L" }9 {8 A; C) f! s/ a& yto set-initial-turtle-vars-wealth
& J1 _. }" q7 b# _ let max-wealth max [wealth] of turtles
) e, D/ G" y* i2 U set age 0
: Z* n* c$ i5 D0 {) I3 U% U4 d face one-of neighbors4 : l$ X6 a; N7 R% P1 x
set life-expectancy life-expectancy-min +# b2 m# F: \: H! r
random life-expectancy-max 7 i! [$ T+ V3 v
set metabolism 1 + random metabolism-up1 b7 U5 @" \2 C1 E/ @' ^
set wealth metabolism + random 30
2 M1 c" U' q) i0 w& Z; i set vision 1 + random max-vision
+ G* n+ T# E/ I; \1 zend
( U& [5 S0 u* G) R; eto redistribution
& ^3 \( `$ B `& |/ _( i1 Zlet max-wealth max [wealth] of turtles
. L! ?0 ^: P4 ~0 X; Blet min-wealth min [wealth] of turtles$ a3 ^2 d2 a c* B; D
if (wealth <= max-wealth / 3)
3 L! R9 ]6 [, B, A/ P5 A$ b [set wealth wealth + Low-income-protection ]# H. ^7 u( U0 P
end F! R6 l6 [1 o5 \% N+ I
' j) G' ?8 R! Q! V* m( L: ^4 l2 ^to recolor-turtles: m. i) G5 w. H+ J3 \5 H4 a
let max-wealth max [wealth] of turtles0 J4 r8 W" R' x: K
ask turtles( G% Z1 s& l( g# z" `. t+ Z V
[ ifelse (wealth <= max-wealth / 3)0 K4 n8 p/ V9 o6 @: E- r
[ set color red ]
9 F4 X7 I$ @0 _/ T8 V7 q6 I [ ifelse (wealth <= (max-wealth * 2 / 3))/ q( |* H: \1 Z2 f9 g* N; {) p3 }
[ set color yellow ]) e9 m$ z$ v# P
[ set color green ] ] ]
, x) @7 H1 @- Z* G7 k! n ask turtles [ifelse show-wealth?
1 C, W' S9 e4 f- a D [ set label wealth ]4 L* d- i% x) h+ I, n1 v
[ set label "" ]]
; I7 _/ C( C* @" ^end- [6 `8 M' f8 m8 s: V
& h. G( g8 G! wto go
# h1 P2 c3 ?, u5 J+ _ ask turtles
# Z$ \0 J# D( | x5 N" R [ turn-towards-grain ] $ \' a K- b: m) ?3 I* M
harvest d4 Z8 z1 j9 o: U) b9 ^# w
ask turtles
" g3 B9 g6 C W [ move-eat-age-die ]4 k! u0 P8 d7 n$ P
recolor-turtles$ n- J7 H! ?, ^3 x- K
if ticks mod grain-growth-interval = 04 a Q# q, p! _ ]6 t* r
[ ask patches [ grow-grain ] ]
% A: o5 K. m4 b9 u( m+ w# a% a ) a( p9 K& v& D& V' Q+ n
if ticks mod 11 = 0
. W" G9 n' t X [ask turtles
: g7 Q7 C* T) R, I [ redistribution ]]
0 o2 L- j; {( |3 M7 N# M if ticks mod 5 = 0
, d3 k( N* f1 ^8 H8 l1 w8 h [ask turtles
1 j6 ^9 \& \1 W/ }, M/ G/ j [ visions ]]
2 [* Y2 u: H; Q tick, ~, J+ `5 \# B9 d/ d0 H' h( H/ ~
update-plots- ?' ?9 e' o, z8 P J7 _( m
end5 X; W% u! r5 `* D2 \9 k$ k
to visions9 `# t- M( U+ s
set vision vision + 1
! X+ k8 O& ]$ K( x* m# X) Uend
% [6 f; ]$ P/ a- X: V' n/ Q! ~$ y6 m' D% D% l
Z& n0 D5 N, Z% s) S8 Q
6 [( E- ?5 _3 }
to turn-towards-grain
4 `& J) L! F! ?% o6 e set heading 0" F: L: @; q. _5 b6 Q2 a. L
let best-direction 05 j8 G; h+ M& `% h5 w. |# v
let best-amount grain-ahead7 s, Y. m8 Y. o+ c2 i
set heading 90/ c' @# {: F2 s8 c2 m* V' X
if (grain-ahead > best-amount)5 } S- U p. u n$ ~# v1 J
[ set best-direction 90
- f6 _* Z! W# [% G* A set best-amount grain-ahead ]3 ^/ D* W) P* U4 N/ g- v# N8 P
set heading 1802 h: G F' y# J; V$ |9 g) _; m
if (grain-ahead > best-amount)
; L1 ?7 @ m4 _, z8 H& | [ set best-direction 180
: N. S4 v9 @5 u% V+ i9 Z5 g set best-amount grain-ahead ]* G: `1 g4 t$ a& m. L2 |6 q
set heading 270
+ M0 B0 o, ^1 P7 v$ ~ if (grain-ahead > best-amount)
0 l2 g$ Y( ?3 ?7 x! k [ set best-direction 270; i3 t1 z( ^ k9 X. g
set best-amount grain-ahead ]2 c" \2 x o$ j
set heading best-direction
4 n6 a/ f$ i* u- U, A) J" {end! b6 T; G4 R6 t% Q% H& [: X% L
4 N3 C- K1 B% n/ E
. t/ x+ ^! w6 a) ~3 T
to-report grain-ahead 6 f- K3 m) F5 c/ D
let total 0
! O" R9 c" C$ [! h. t6 v let how-far 1
8 C6 I$ c0 r! g! {& e$ h4 a E repeat vision4 @8 g' \ z. c E
[ set total total + [grain-here] of patch-ahead how-far3 O, L/ r {. \) P b: Y: p a
set how-far how-far + 1 ]
- R @- ^, A6 D& E o report total
3 Z( D A2 r; M: r1 Kend
1 U7 F) H* U, G L! ]4 m" q4 _) c, I8 o% C% t
to grow-grain , m5 s) f9 g9 S6 K+ c/ m8 e
if (grain-here < max-grain-here) [- V, V" v5 f3 r7 U$ o/ ^
[ set grain-here grain-here + num-grain-grown A; o0 L9 `: m) j( b4 O
if (grain-here > max-grain-here)
$ }/ q. O: M: }1 M [ set grain-here max-grain-here ]
9 ]+ E' a" B, r recolor-patch ]7 |+ m9 A1 e1 ]$ j1 l7 D- Z, `' p. `
end7 T q2 }, {! |& X
to harvest
) ^+ S0 w' g% A! `" O9 [/ P/ E ask turtles6 X1 ^ M2 v) K4 B7 A# s, ^2 ` j
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ] `/ O) a9 g2 {. S* `; H9 z
ask turtles" ?4 u" C0 u& P2 P
[ set grain-here 0
+ q: e8 y' X/ ~" L recolor-patch ]( T R# V$ L* Y1 B: x( a
; s6 B, Y. ~' j! P* F5 e. \end
% z# R8 y% A7 T U4 b3 ?3 n
; t1 a8 W0 a$ uto move-eat-age-die
! q: I4 b1 R Z* g; p fd 16 l* H- D1 f" a1 D
set wealth (wealth - metabolism)& I& m. q z* C Q8 j' }8 m
set age (age + 1)% j- [! Z R$ h" r' @2 B2 V
if (age >= life-expectancy)* E. c- N- L5 Z5 A" O
[ set-initial-turtle-vars-age ]$ w, ]; j7 I! N6 ^+ r
if (wealth < 0)
+ b% Y. \2 D, r [ set-initial-turtle-vars-wealth ]
$ ]& z5 Z$ e( A" A. r: ~ 5 R/ I1 F0 v5 c) l
end
8 k, e( t' M# v5 O. i; p4 i. J! T
& s! g$ m# H$ S) O! f( {( e Z& t% J6 Y' z8 ~' h4 ]+ ^' F
to setup-plots
! P7 Q% N [) {$ Z- ?4 Q set-current-plot "Class Plot"4 C8 y0 d5 J. w3 n O1 s N* g
set-plot-y-range 0 num-people. e) B/ y2 d W. v1 _% A# Q: v
set-current-plot "Class Histogram"
1 |& n/ @% z8 x0 ?5 t, `* j/ l8 @4 K/ M! ` set-plot-y-range 0 num-people
9 k/ ?7 q, i6 x1 ~end
- h" J* F5 v( l& Y* j9 G) v6 F# c
?9 O7 B9 ^* N" p' f4 _2 tto update-plots4 k0 m9 S, x Y/ M; ~( W) w. A
update-class-plot: K$ Q7 D, k4 Q
update-class-histogram
W5 s2 Q. f0 l. X0 Q" T0 X @ update-lorenz-and-gini-plots
) d7 L b: t9 Z- eend
8 j7 l5 D8 L! o% t0 y8 A4 F( |7 y( I' ?6 g7 L. T- W' f
to update-class-plot0 `% y+ W* i: a9 L1 Q7 \
set-current-plot "Class Plot"+ y6 q9 D' [& q2 g7 o2 D0 M" W. }
set-current-plot-pen "low"! B: ]9 |5 N9 Z
plot count turtles with [color = red]. k: c2 A* o5 [: c4 A; p0 f( z. `
set-current-plot-pen "mid"4 ^0 s9 m, k/ T$ w2 O/ E5 X
plot count turtles with [color = yellow]1 s, j- R! C/ z* H a% z
set-current-plot-pen "up"
F" I0 a5 D& x. Z plot count turtles with [color = green]
3 N# S3 D( W, ^3 qend4 {7 p8 p r, W
! s @1 q) H4 ~7 |to update-class-histogram' B; K# g6 W% }7 ]9 p: r0 `, G
set-current-plot "Class Histogram"
8 I& G2 I; ~( U6 ` plot-pen-reset
, ^6 w& v8 o3 t' e4 I8 O! X set-plot-pen-color red
* y$ ]1 D1 u# d" J* v% U5 Y9 t2 @ plot count turtles with [color = red]
0 b+ E, q$ T' m6 b* v set-plot-pen-color yellow) j' Y- k( f) g+ d( w
plot count turtles with [color = yellow]+ ]* S% M6 X8 D
set-plot-pen-color green: J' K' { S: x* R0 q1 k
plot count turtles with [color = green]
5 m7 V6 D* Z5 ~5 K! [end
! Z9 ~, I/ o+ }0 s, p3 H. m Pto update-lorenz-and-gini-plots
7 C& O$ H* w/ P4 T set-current-plot "Lorenz Curve"4 z8 q$ y! y" X! q
clear-plot4 r7 u' [$ ~) v# w' | y1 u
: ^2 V$ x' m- V5 G set-current-plot-pen "equal"" Q+ M/ w0 e- g p. G9 W' y
plot 0
$ [! U" U D* n2 c- U6 q- B plot 100
0 D" u0 }( H7 v g8 }
1 u. p6 o. n t- y* v set-current-plot-pen "lorenz"3 Q& `: J/ M- D+ d3 l% G4 L7 E
set-plot-pen-interval 100 / num-people$ ], x& d1 a, U1 K+ M* O# ]
plot 0- e# O3 {; @- h0 Y) k
' O! f- Q7 G. J7 \. z2 S
let sorted-wealths sort [wealth] of turtles) M1 r& k9 v7 `+ N
let total-wealth sum sorted-wealths% L3 Q6 p9 `6 }
let wealth-sum-so-far 0: Q& V& _, y7 n0 d; l6 d# J
let index 03 D2 }4 L- L( }% E& b0 U
let gini-index-reserve 0; r( e5 x& s& x% v+ V- w
% \! z* g# L& w7 A repeat num-people [: r3 z3 c, G% }! I" P
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)+ f2 w; W6 \! U% m
plot (wealth-sum-so-far / total-wealth) * 1003 M0 ]' A; |7 n0 a4 R
set index (index + 1)5 s2 e. A9 X7 y, c, [. O
set gini-index-reserve/ m- L. ?) `$ ^; D# i" s \
gini-index-reserve +
" T: R+ a5 u8 F1 t (index / num-people) -; Z0 j# i9 }7 h. V4 U1 Q( W
(wealth-sum-so-far / total-wealth)
% `9 s9 q7 I* |8 T ]
- f& x' W! ~1 x3 {9 Y& a. x P: E2 x, C0 J
set-current-plot "Gini-Index v. Time": M+ `3 j* K" Z+ X3 R8 Q% K
plot (gini-index-reserve / num-people) / area-of-equality-triangle
2 J( V) G+ C& S( a- \' A. j- `end
: L4 H6 e5 H2 B. k- ?, oto-report area-of-equality-triangle
6 K0 L- _- F( Z report (num-people * (num-people - 1) / 2) / (num-people ^ 2)( } g: u. ^% l
end |