设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 6580|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现# L7 Z2 K3 k+ T5 s( T
globals
  V, R0 k/ m7 Z5 f/ X  u[
; n' x/ Q  b2 k& D  max-grain    ' i* I" G, C7 _6 y1 p( u
  N% R( t( @; |1 o; X4 C
]) j  ], V- }6 K0 @
) o: P! u) ?" c8 `
patches-own
/ M/ U/ v) b' Y$ b) E9 D[: Q( v  Z% I) Y, e
  grain-here      # D# Z! G  j. i
  max-grain-here  
! F2 m! K5 P! h' M! B" i]- u! K) l5 I/ W. h2 X8 L

) {  C* V  M. n% T/ v( wturtles-own9 P( Q- V5 ~% }0 h% x
[
) p: i* B' p& K6 \  b4 p8 N  age              - d$ ~! [- @1 g6 l1 H; r1 u) v
  wealth         ' F" b" R  u" p- O5 B$ z( I; n
  life-expectancy  
$ ^" v: O% A4 H. K$ F8 [. z# O7 V  metabolism      
; ]* D  f: `5 h& e& W3 F1 x  vision
1 i( u3 B& n$ i) N* ^: M) f  inherited         3 S  f9 K9 {$ [) y& h8 N
]$ J5 o+ ?' N5 u9 Y- S
7 U$ a1 u3 O* v6 e/ {

8 O  T- i6 O5 r% [7 c, l+ vto setup+ ~: B4 |+ _8 V, X% o' {1 R
  ca
% @4 X. [$ g& q9 ^' I% Z  set max-grain 50. H: t  @! n7 C
  setup-patches; Q6 E# V9 L( f2 V, ?
  setup-turtles
4 Z! P) p+ K. M1 B+ c+ b  setup-plots4 l5 k" z# R% A9 r
  update-plots* a' `, \# p0 V1 c! \/ k
end
# }) G. W$ M! y/ Z0 k3 q& vto setup-patches9 @7 e" N9 u. I
  ask patches
! j2 X# f  O, N4 R& c    [ set max-grain-here 02 o0 {1 V6 Z. n4 U/ Q+ L4 A4 a
      if (random-float 100.0) <= percent-best-land
- \& e6 A/ p5 b( ^+ @        [ set max-grain-here max-grain
: _5 G4 e3 P6 }" l          set grain-here max-grain-here ] ]
: R- H6 F. z6 f4 R% b0 t: c  repeat 5
7 F8 H" ^" V) \' P$ c    [ ask patches with [max-grain-here != 0]3 F5 `1 ~" A+ Y
        [ set grain-here max-grain-here ]' K* M( e3 U/ y
      diffuse grain-here 0.5 ]) ^5 |8 N) I& U8 ^4 O: \
  repeat 10
3 ?7 R( Y+ Z. u3 ?    [ diffuse grain-here 0.5]         
$ b1 X1 i8 m* O3 R  ask patches' {( `& v* L' |: ^. C- S9 \' W
    [ set grain-here floor grain-here    6 N% H$ [, @, }- U
      set max-grain-here grain-here      
# s1 X; b' A- v; A      recolor-patch ]
+ E4 e3 R; U5 e( ^end+ }4 T) A! D% [
to recolor-patch  ! [1 p, U- ]' E3 }, S5 Y" [
  set pcolor scale-color sky grain-here 0 max-grain
2 f2 V: Y( F" y: g- Xend
/ ~' ?  l4 o8 `3 o$ jto setup-turtles
- h/ j$ r$ }# C: q9 }  set-default-shape turtles "person"3 |" |$ |' Q$ d" k
  crt num-people
. Y; O  o4 ]1 W* d# i# }/ R$ `3 t    [ move-to one-of patches  
: C( o4 ?& g# T* x) R/ R; ]      set size 1.5  & K9 u5 ^. q  ?% ^/ }1 Y
      set-initial-turtle-vars-age
  w9 o0 H  H( {& s9 [: a6 l$ z      set-initial-turtle-vars-wealth
  n) e& O8 S, }; F8 P7 @4 k' s; J      set age random life-expectancy ]
& r  x( N4 g  B/ n5 G3 G  recolor-turtles: P7 s* u/ U- H8 K/ T( [8 a1 l
end( ^7 j( x7 H4 G; U' ~. B% d: D

/ T( o7 A( I  q1 B( s6 Zto set-initial-turtle-vars-age
  C( G0 E: p. _2 t  I" H! C& \& | let max-wealth max [wealth] of turtles
" b9 L0 z3 N: h- S9 p    % T1 i6 j- Q% d6 J. [
     ifelse (wealth <= max-wealth / 3). D  c4 l& X7 C( v- c  @) O- R$ H9 e: p
        [ set color red
, L/ R0 |( r8 ]. |          set age 0
0 n' W- n' _/ z% e7 L          face one-of neighbors4 ( P! I+ `* q, c( k% F7 k
          set life-expectancy life-expectancy-min +# O% U, J5 ?" x; n2 i. z3 p
                        random life-expectancy-max
9 g0 \5 \- C6 y          set metabolism random 1 + metabolism-low+ p* @8 T( ?, ]$ f( V% W3 l
          set wealth metabolism + random 30
* ^. v9 s7 q/ C. D6 V5 h0 [          set vision 1 + random max-vision
+ a* D+ f* F& h4 w+ H             set wealth  wealth +  Wealth-inherited-low ]
# Q/ ~! K% p& S( }, k  G1 o        [ ifelse (wealth <= (max-wealth * 2 / 3))
1 }# ]7 R6 |; ^            [ set color yellow " f/ t8 I# f6 f$ Q3 N: r9 V$ K
              set age 0, a+ i9 l: W* i( e8 E9 q" S" L6 o# E- Q
              face one-of neighbors4
+ C- I) [+ S  ]7 @% p4 p              set life-expectancy life-expectancy-min +5 ~5 m8 d- U! f1 W/ h
                        random life-expectancy-max + 1
3 c: m6 S- B8 {9 L# J* E: ]7 Z              set metabolism  1 + random metabolism-mid! t6 t4 p- h- r
              set wealth metabolism + random 30
/ O% k# H. B& I2 s6 i$ e' z1 N              set vision 3 + random max-vision
- m# ~2 q0 }4 l% U) ]                set wealth  wealth + Wealth-inherited-mid]( {) ^7 f4 K, y: i0 |9 J
            [ set color green / t7 r/ l' {8 {2 o  g
              set age 03 Q, s8 u) x. N$ a, t' {
              face one-of neighbors4 4 _* K! i, Z6 G$ M9 z
              set life-expectancy life-expectancy-min +
$ R3 Z* x! k; V/ X2 o                        random life-expectancy-max  + 2! [: k, \$ s7 d6 e
              set metabolism 2 + random metabolism-up, y! |* F/ Y: h& S) i
              set wealth metabolism + random 30
" P8 x9 g/ j( |! A) T, G$ Y  }, e              set vision 3 + random max-vision( `4 Z0 H0 i& `7 U# S
              set wealth  wealth + Wealth-inherited-up ] ]
; }7 P+ l9 x8 l# i4 o 0 |4 f/ ~- C2 T; G
end1 ?6 _" S% f9 o% ~* [
to set-initial-turtle-vars-wealth: z# H1 b+ l8 k) A( K" @4 b
let max-wealth max [wealth] of turtles" W3 X" Q1 N" x$ v% J3 M  I7 \
          set age 05 z' o! `& B; ?8 F7 t' R
          face one-of neighbors4
. ^- w- k1 [& |          set life-expectancy life-expectancy-min +6 n: D# ^7 o$ D+ \
                        random life-expectancy-max 2 P  F. f9 e  o8 D& q; O* M
          set metabolism 1 + random metabolism-up
0 c, z8 \2 Y& O7 N          set wealth metabolism + random 30) X7 C* c  Q+ d$ |$ G* A
          set vision 1 + random max-vision
( O; h% K+ \, [end
; x! {. T1 S1 h# i. vto redistribution
5 c. l  i) h! k/ h! S% Hlet max-wealth max [wealth] of turtles: p2 T) x4 I0 A
let min-wealth min [wealth] of turtles" K5 p; e! U  E) C5 f5 V
if (wealth <= max-wealth / 3)' V! p7 q; B0 z
[set wealth  wealth + Low-income-protection ]
6 L7 R4 d9 N) n* f, |- nend: a2 y! L2 T- D/ H4 Y
          ! y* b% ]2 n. q! c: G8 C% U
to recolor-turtles
5 |) A9 d. L: s* Q0 Z, p& x  let max-wealth max [wealth] of turtles- ?0 d, p- X5 e; z! T- P0 S+ q
  ask turtles0 P0 }* d# K4 ^4 j% H: }
   [ ifelse (wealth <= max-wealth / 3)
* U: I( u4 c1 F/ y2 N; B. Z        [ set color red ]
: r. G  K) q+ F9 J4 c- n        [ ifelse (wealth <= (max-wealth * 2 / 3))6 a0 p# ~  z6 R1 G2 _. c
            [ set color yellow ]
0 w/ T* @$ e7 g2 ^            [ set color green ] ] ]( {' x' u! L* P- D3 ~5 x
ask turtles [ifelse show-wealth?
3 T4 O, h  {0 }1 ^' g    [ set label wealth ]
  b: }5 Q7 [% |6 L  O. V, U    [ set label "" ]]
$ v9 {( |* i# eend# \6 w4 C0 `$ ~; N

6 d1 _7 |( i; s% |, V# Pto go9 v# y5 c& I7 m* D" }  M& i" \
  ask turtles
+ f$ s  @; s% \. o    [ turn-towards-grain ]  % X0 _: O) t" S: t) {! I- G
  harvest
; Q) J( D& I9 ~7 v  ask turtles: D: X" _, t1 x! O
    [ move-eat-age-die ]7 q: \; H0 [- j( F( C. a
  recolor-turtles
1 z: K" z7 F+ l* v( A  if ticks mod grain-growth-interval = 00 ~* |( N; l) U% F
    [ ask patches [ grow-grain ] ]
! P' r# d# G9 K. p; A/ j, D   
. d% [# N$ m& u5 x6 K  if ticks mod 11 = 0
* P9 h4 r" G6 l+ _* K  [ask turtles
6 h  U; ]0 J/ Q. U  [ redistribution ]]  f. o0 ^) l: u$ N
  if ticks mod 5 = 0
2 P" ?1 `# ~7 W$ \# J$ f   [ask turtles: G9 G2 N/ D/ a1 H/ p' T0 O
  [ visions ]]
- `8 T; p0 P/ Z  tick
5 Q7 w- e  s0 ~" M3 m8 o# _  update-plots
7 M; {+ h1 Y, C" c* t. G5 y/ d. hend
4 r; y* |* `9 S1 C$ ?. Dto visions* n% t8 e$ `! f1 G0 n
set vision vision + 1
- @1 l/ P8 Y/ K6 ?6 V8 n0 Yend0 T" L- ~" p  l0 R; P( l; H0 B3 ?
) S+ u  {# \1 h, ]" E6 t
* a5 r# s: M/ \, ^5 F
. M: Z" c1 h+ T
to turn-towards-grain  , z2 K& K, d( J. s4 ]* Y
  set heading 0
4 }' ^' K  r# V; P. _% C0 p  let best-direction 0+ |, N/ \# {3 L" z3 p% ?0 Y" u
  let best-amount grain-ahead
! H- J4 o' f/ M  set heading 90
1 @6 u' k' d* n! X+ R( P  if (grain-ahead > best-amount)
6 c9 l+ b8 L9 [5 ~+ ?6 p4 \$ C" c    [ set best-direction 90
  x, F- X9 ^' Z( h      set best-amount grain-ahead ]! |: q: J, z. }, m7 z  i
  set heading 180- ~& K0 N5 ^' {. R5 v* [# t
  if (grain-ahead > best-amount)+ g  k) ^2 C' x+ m4 j5 `
    [ set best-direction 180
( e  z" k! o. r; Z' t      set best-amount grain-ahead ]# U: n2 h8 ~% f: S
  set heading 270
+ B, c& m2 y  ]. y8 P' @+ t  if (grain-ahead > best-amount)) G/ X. e* X' k( X% ^( p3 ?
    [ set best-direction 270
' u# d& V( I0 x5 k      set best-amount grain-ahead ]. x8 E: y/ _- I- E! K. R5 `# F
  set heading best-direction
, }0 Q0 v1 ?0 B4 hend
6 p% T7 u, a. S& m" [9 Y8 s7 F1 G/ W1 w9 O" ~
, K+ P9 h4 a& d, n7 @
to-report grain-ahead  
5 W/ k+ X. W/ d$ s) g) U: J  let total 09 R% D( [+ |1 c& x' x$ A1 ]! y
  let how-far 1- e1 p9 z) Z( v
  repeat vision
# ]! `, x: o" p7 o4 Q    [ set total total + [grain-here] of patch-ahead how-far$ u: R- w' W; J; Z
      set how-far how-far + 1 ]
' `1 v+ T/ l* L' d5 @, V9 a# ?  report total
" j7 [# r: m, K8 Pend" J5 {+ z- l+ h/ ^5 h1 |0 t( ~. {
" E9 |2 w  X/ S9 l, E" K0 K
to grow-grain
& s3 Z0 n" w6 Z* B9 w6 v( y. o  if (grain-here < max-grain-here)
6 d6 o( j+ u  p' `3 t# G4 |    [ set grain-here grain-here + num-grain-grown
+ o2 k0 c$ D6 [9 y! I      if (grain-here > max-grain-here)
! [  A( f  @- K- s        [ set grain-here max-grain-here ]
6 I/ V, S( T3 [2 w      recolor-patch ]
6 h6 x9 G# l' Tend3 @9 V! [1 f' |' n3 c. _
to harvest$ I# {; ?& c; P8 Y: ^, k
  ask turtles
- c4 D" y! b) X8 N/ S    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
7 X2 P2 O1 A8 Y# t0 c' C- m  ask turtles0 r# |+ M  X, V% i  }
    [ set grain-here 0- P; o) S- `% V( K+ d# R) h8 z
      recolor-patch ]
3 K) Y+ X0 t/ w9 x  9 {+ Q% `- E4 O  k' ^
end
9 ?$ M5 C3 A+ F  X1 j, e" E( ]5 X& f# K1 x
to move-eat-age-die  , v7 t4 L6 l3 b# F
  fd 1
- ]7 r! c4 I# V" s  set wealth (wealth - metabolism)
2 a) j6 s' p6 G; p+ z* U) C    set age (age + 1)
2 |1 L5 x1 K' L& j  if (age >= life-expectancy)% B1 ?3 o& X$ h1 ]
    [ set-initial-turtle-vars-age ]( Q3 _. h5 h8 c6 f# n
  if (wealth < 0)
6 y0 z0 S2 f& k8 y' Y5 v  F    [ set-initial-turtle-vars-wealth ]
, d5 a. Z  r& Q$ I3 t# W% f    9 D% ~9 C; u; c
end
* O; e# z  z, g2 x0 S3 U% j1 ]6 x/ O* T5 b  Y3 A  I- v

$ @# C+ t0 ^) G1 m7 K8 g4 a) }8 vto setup-plots( t. [3 ^& Q3 `4 T8 W* ~  h- Z
  set-current-plot "Class Plot"
2 q# N2 S+ B/ @( V, l5 D+ r# w  set-plot-y-range 0 num-people* C5 K, k0 v( y+ P% b, j
  set-current-plot "Class Histogram"% ^% {& [  g% n1 k; C
  set-plot-y-range 0 num-people
7 \6 C0 X8 i$ N) k& @end
2 o3 q' U' t& ~% R: k. D  d  c9 L3 A0 S) t
to update-plots7 ?+ F5 P+ q$ u' G8 T
  update-class-plot
4 s& O1 V. w4 X9 H$ X$ E  update-class-histogram
1 F! s$ v% j, w( \7 ]  update-lorenz-and-gini-plots8 U4 {  Y1 @; A2 H3 `
end
  I7 l' ?6 u4 i! k8 [" v3 U; U1 X5 e9 N" S3 k' o: q! C- p
to update-class-plot
% A" m! r, D  D1 O  set-current-plot "Class Plot"
3 K7 p$ Z- r1 [: f4 a$ n  set-current-plot-pen "low"
* C$ Y6 U0 j2 P8 `! q8 D2 T  plot count turtles with [color = red]
$ M' o# I' P  x) H$ m) h  set-current-plot-pen "mid"" o  C+ l9 ]' o2 q2 L; Q
  plot count turtles with [color = yellow]
3 z7 `/ A) B1 [7 L0 P  set-current-plot-pen "up"" u* g$ p% @  h7 F' T6 T
  plot count turtles with [color = green]! q3 t- r5 M( I3 C  W3 q/ X
end" I# M" R" V( a& V2 ^

: H& x# ]0 D! ]' L2 m' ~! v) K" qto update-class-histogram& T% `. e$ @& r1 e7 Q7 X+ }2 H% [
  set-current-plot "Class Histogram"
) z1 V3 z+ n! P% v  plot-pen-reset& F4 X( }' U( T: \' [1 Z
  set-plot-pen-color red2 x5 P" U+ M7 t
  plot count turtles with [color = red]! X6 O# w5 `$ l2 _
  set-plot-pen-color yellow
5 Q$ E, T8 ^" k5 h7 y2 T6 d  plot count turtles with [color = yellow], {0 C. L1 D1 \( i1 A
  set-plot-pen-color green/ g- O2 z* `/ l1 f4 H: I
  plot count turtles with [color = green]/ s9 v5 q- V3 `6 A# z
end
% H# O1 Z% N2 Y) L0 V: G9 dto update-lorenz-and-gini-plots
% N4 J& D1 G0 C6 D1 ^6 ^  set-current-plot "Lorenz Curve"  |: G1 U6 L: B$ @/ q
  clear-plot6 `0 Q/ J& c5 ?6 I: r9 u
2 t6 U/ P% K- K$ Y; Q5 L9 L
  set-current-plot-pen "equal"6 G! t6 r5 @. P# g3 R1 _, g
  plot 02 m: O3 r6 t. D/ w
  plot 1006 y8 }1 h: n% c# T$ ~5 T/ Y7 \

; F0 {4 z, m7 V: L  set-current-plot-pen "lorenz"
; K. k' L. L; U  set-plot-pen-interval 100 / num-people" C( ~0 ?' F$ u7 E  I, l1 i
  plot 0
. l2 V  s5 ]" }( N* ~$ X4 }- X
) y' h# ]0 N& e3 _  let sorted-wealths sort [wealth] of turtles3 f( {$ g" i6 m$ R. D; A) }. I
  let total-wealth sum sorted-wealths2 w' w* [8 J+ O4 T
  let wealth-sum-so-far 0$ o( T" k( W7 m
  let index 0, G8 k! E, I$ h
  let gini-index-reserve 0
1 @" k4 i% h# h8 m
- D- l1 m) m1 A) x7 h: c  repeat num-people [
3 q2 a% b/ o6 q3 `; j4 Q, J    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
# i  Q, t0 x0 f6 U. J$ z    plot (wealth-sum-so-far / total-wealth) * 1005 @$ `$ r' R+ `6 Y9 O: L6 @( z& c0 ^
    set index (index + 1)
6 k: S+ S$ t" x; @3 |+ f* T    set gini-index-reserve: |9 V4 \7 v% M! @5 B# }8 |8 H
      gini-index-reserve +, `' ^2 o6 M, D8 m6 _3 i
      (index / num-people) -
  V  w, w. \, i2 t      (wealth-sum-so-far / total-wealth)% f: Y+ Z5 X5 A7 i6 y& s; n
  ]
9 Q# k8 ~, L. s, Y$ R( E6 r$ ?; S3 w! y+ a7 B5 {( w! D; ]
  set-current-plot "Gini-Index v. Time"
% W4 r. x8 P; C. b7 P6 A  plot (gini-index-reserve / num-people) / area-of-equality-triangle
4 {) s" E0 ?; t4 o+ send- r/ K9 B- X6 c  A5 {1 ]* h! d* M
to-report area-of-equality-triangle
( S/ M, y" a: K% Z; E  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
- N% [4 A! G- A% V" }# i- eend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-9-14 08:54 , Processed in 0.014342 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表