请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现# L7 Z2 K3 k+ T5 s( T
globals
V, R0 k/ m7 Z5 f/ X u[
; n' x/ Q b2 k& D max-grain ' i* I" G, C7 _6 y1 p( u
N% R( t( @; |1 o; X4 C
]) j ], V- }6 K0 @
) o: P! u) ?" c8 `
patches-own
/ M/ U/ v) b' Y$ b) E9 D[: Q( v Z% I) Y, e
grain-here # D# Z! G j. i
max-grain-here
! F2 m! K5 P! h' M! B" i]- u! K) l5 I/ W. h2 X8 L
) { C* V M. n% T/ v( wturtles-own9 P( Q- V5 ~% }0 h% x
[
) p: i* B' p& K6 \ b4 p8 N age - d$ ~! [- @1 g6 l1 H; r1 u) v
wealth ' F" b" R u" p- O5 B$ z( I; n
life-expectancy
$ ^" v: O% A4 H. K$ F8 [. z# O7 V metabolism
; ]* D f: `5 h& e& W3 F1 x vision
1 i( u3 B& n$ i) N* ^: M) f inherited 3 S f9 K9 {$ [) y& h8 N
]$ J5 o+ ?' N5 u9 Y- S
7 U$ a1 u3 O* v6 e/ {
8 O T- i6 O5 r% [7 c, l+ vto setup+ ~: B4 |+ _8 V, X% o' {1 R
ca
% @4 X. [$ g& q9 ^' I% Z set max-grain 50. H: t @! n7 C
setup-patches; Q6 E# V9 L( f2 V, ?
setup-turtles
4 Z! P) p+ K. M1 B+ c+ b setup-plots4 l5 k" z# R% A9 r
update-plots* a' `, \# p0 V1 c! \/ k
end
# }) G. W$ M! y/ Z0 k3 q& vto setup-patches9 @7 e" N9 u. I
ask patches
! j2 X# f O, N4 R& c [ set max-grain-here 02 o0 {1 V6 Z. n4 U/ Q+ L4 A4 a
if (random-float 100.0) <= percent-best-land
- \& e6 A/ p5 b( ^+ @ [ set max-grain-here max-grain
: _5 G4 e3 P6 }" l set grain-here max-grain-here ] ]
: R- H6 F. z6 f4 R% b0 t: c repeat 5
7 F8 H" ^" V) \' P$ c [ ask patches with [max-grain-here != 0]3 F5 `1 ~" A+ Y
[ set grain-here max-grain-here ]' K* M( e3 U/ y
diffuse grain-here 0.5 ]) ^5 |8 N) I& U8 ^4 O: \
repeat 10
3 ?7 R( Y+ Z. u3 ? [ diffuse grain-here 0.5]
$ b1 X1 i8 m* O3 R ask patches' {( `& v* L' |: ^. C- S9 \' W
[ set grain-here floor grain-here 6 N% H$ [, @, }- U
set max-grain-here grain-here
# s1 X; b' A- v; A recolor-patch ]
+ E4 e3 R; U5 e( ^end+ }4 T) A! D% [
to recolor-patch ! [1 p, U- ]' E3 }, S5 Y" [
set pcolor scale-color sky grain-here 0 max-grain
2 f2 V: Y( F" y: g- Xend
/ ~' ? l4 o8 `3 o$ jto setup-turtles
- h/ j$ r$ }# C: q9 } set-default-shape turtles "person"3 |" |$ |' Q$ d" k
crt num-people
. Y; O o4 ]1 W* d# i# }/ R$ `3 t [ move-to one-of patches
: C( o4 ?& g# T* x) R/ R; ] set size 1.5 & K9 u5 ^. q ?% ^/ }1 Y
set-initial-turtle-vars-age
w9 o0 H H( {& s9 [: a6 l$ z set-initial-turtle-vars-wealth
n) e& O8 S, }; F8 P7 @4 k' s; J set age random life-expectancy ]
& r x( N4 g B/ n5 G3 G recolor-turtles: P7 s* u/ U- H8 K/ T( [8 a1 l
end( ^7 j( x7 H4 G; U' ~. B% d: D
/ T( o7 A( I q1 B( s6 Zto set-initial-turtle-vars-age
C( G0 E: p. _2 t I" H! C& \& | let max-wealth max [wealth] of turtles
" b9 L0 z3 N: h- S9 p % T1 i6 j- Q% d6 J. [
ifelse (wealth <= max-wealth / 3). D c4 l& X7 C( v- c @) O- R$ H9 e: p
[ set color red
, L/ R0 |( r8 ]. | set age 0
0 n' W- n' _/ z% e7 L face one-of neighbors4 ( P! I+ `* q, c( k% F7 k
set life-expectancy life-expectancy-min +# O% U, J5 ?" x; n2 i. z3 p
random life-expectancy-max
9 g0 \5 \- C6 y set metabolism random 1 + metabolism-low+ p* @8 T( ?, ]$ f( V% W3 l
set wealth metabolism + random 30
* ^. v9 s7 q/ C. D6 V5 h0 [ set vision 1 + random max-vision
+ a* D+ f* F& h4 w+ H set wealth wealth + Wealth-inherited-low ]
# Q/ ~! K% p& S( }, k G1 o [ ifelse (wealth <= (max-wealth * 2 / 3))
1 }# ]7 R6 |; ^ [ set color yellow " f/ t8 I# f6 f$ Q3 N: r9 V$ K
set age 0, a+ i9 l: W* i( e8 E9 q" S" L6 o# E- Q
face one-of neighbors4
+ C- I) [+ S ]7 @% p4 p set life-expectancy life-expectancy-min +5 ~5 m8 d- U! f1 W/ h
random life-expectancy-max + 1
3 c: m6 S- B8 {9 L# J* E: ]7 Z set metabolism 1 + random metabolism-mid! t6 t4 p- h- r
set wealth metabolism + random 30
/ O% k# H. B& I2 s6 i$ e' z1 N set vision 3 + random max-vision
- m# ~2 q0 }4 l% U) ] set wealth wealth + Wealth-inherited-mid]( {) ^7 f4 K, y: i0 |9 J
[ set color green / t7 r/ l' {8 {2 o g
set age 03 Q, s8 u) x. N$ a, t' {
face one-of neighbors4 4 _* K! i, Z6 G$ M9 z
set life-expectancy life-expectancy-min +
$ R3 Z* x! k; V/ X2 o random life-expectancy-max + 2! [: k, \$ s7 d6 e
set metabolism 2 + random metabolism-up, y! |* F/ Y: h& S) i
set wealth metabolism + random 30
" P8 x9 g/ j( |! A) T, G$ Y }, e set vision 3 + random max-vision( `4 Z0 H0 i& `7 U# S
set wealth wealth + Wealth-inherited-up ] ]
; }7 P+ l9 x8 l# i4 o 0 |4 f/ ~- C2 T; G
end1 ?6 _" S% f9 o% ~* [
to set-initial-turtle-vars-wealth: z# H1 b+ l8 k) A( K" @4 b
let max-wealth max [wealth] of turtles" W3 X" Q1 N" x$ v% J3 M I7 \
set age 05 z' o! `& B; ?8 F7 t' R
face one-of neighbors4
. ^- w- k1 [& | set life-expectancy life-expectancy-min +6 n: D# ^7 o$ D+ \
random life-expectancy-max 2 P F. f9 e o8 D& q; O* M
set metabolism 1 + random metabolism-up
0 c, z8 \2 Y& O7 N set wealth metabolism + random 30) X7 C* c Q+ d$ |$ G* A
set vision 1 + random max-vision
( O; h% K+ \, [end
; x! {. T1 S1 h# i. vto redistribution
5 c. l i) h! k/ h! S% Hlet max-wealth max [wealth] of turtles: p2 T) x4 I0 A
let min-wealth min [wealth] of turtles" K5 p; e! U E) C5 f5 V
if (wealth <= max-wealth / 3)' V! p7 q; B0 z
[set wealth wealth + Low-income-protection ]
6 L7 R4 d9 N) n* f, |- nend: a2 y! L2 T- D/ H4 Y
! y* b% ]2 n. q! c: G8 C% U
to recolor-turtles
5 |) A9 d. L: s* Q0 Z, p& x let max-wealth max [wealth] of turtles- ?0 d, p- X5 e; z! T- P0 S+ q
ask turtles0 P0 }* d# K4 ^4 j% H: }
[ ifelse (wealth <= max-wealth / 3)
* U: I( u4 c1 F/ y2 N; B. Z [ set color red ]
: r. G K) q+ F9 J4 c- n [ ifelse (wealth <= (max-wealth * 2 / 3))6 a0 p# ~ z6 R1 G2 _. c
[ set color yellow ]
0 w/ T* @$ e7 g2 ^ [ set color green ] ] ]( {' x' u! L* P- D3 ~5 x
ask turtles [ifelse show-wealth?
3 T4 O, h {0 }1 ^' g [ set label wealth ]
b: }5 Q7 [% |6 L O. V, U [ set label "" ]]
$ v9 {( |* i# eend# \6 w4 C0 `$ ~; N
6 d1 _7 |( i; s% |, V# Pto go9 v# y5 c& I7 m* D" } M& i" \
ask turtles
+ f$ s @; s% \. o [ turn-towards-grain ] % X0 _: O) t" S: t) {! I- G
harvest
; Q) J( D& I9 ~7 v ask turtles: D: X" _, t1 x! O
[ move-eat-age-die ]7 q: \; H0 [- j( F( C. a
recolor-turtles
1 z: K" z7 F+ l* v( A if ticks mod grain-growth-interval = 00 ~* |( N; l) U% F
[ ask patches [ grow-grain ] ]
! P' r# d# G9 K. p; A/ j, D
. d% [# N$ m& u5 x6 K if ticks mod 11 = 0
* P9 h4 r" G6 l+ _* K [ask turtles
6 h U; ]0 J/ Q. U [ redistribution ]] f. o0 ^) l: u$ N
if ticks mod 5 = 0
2 P" ?1 `# ~7 W$ \# J$ f [ask turtles: G9 G2 N/ D/ a1 H/ p' T0 O
[ visions ]]
- `8 T; p0 P/ Z tick
5 Q7 w- e s0 ~" M3 m8 o# _ update-plots
7 M; {+ h1 Y, C" c* t. G5 y/ d. hend
4 r; y* |* `9 S1 C$ ?. Dto visions* n% t8 e$ `! f1 G0 n
set vision vision + 1
- @1 l/ P8 Y/ K6 ?6 V8 n0 Yend0 T" L- ~" p l0 R; P( l; H0 B3 ?
) S+ u {# \1 h, ]" E6 t
* a5 r# s: M/ \, ^5 F
. M: Z" c1 h+ T
to turn-towards-grain , z2 K& K, d( J. s4 ]* Y
set heading 0
4 }' ^' K r# V; P. _% C0 p let best-direction 0+ |, N/ \# {3 L" z3 p% ?0 Y" u
let best-amount grain-ahead
! H- J4 o' f/ M set heading 90
1 @6 u' k' d* n! X+ R( P if (grain-ahead > best-amount)
6 c9 l+ b8 L9 [5 ~+ ?6 p4 \$ C" c [ set best-direction 90
x, F- X9 ^' Z( h set best-amount grain-ahead ]! |: q: J, z. }, m7 z i
set heading 180- ~& K0 N5 ^' {. R5 v* [# t
if (grain-ahead > best-amount)+ g k) ^2 C' x+ m4 j5 `
[ set best-direction 180
( e z" k! o. r; Z' t set best-amount grain-ahead ]# U: n2 h8 ~% f: S
set heading 270
+ B, c& m2 y ]. y8 P' @+ t if (grain-ahead > best-amount)) G/ X. e* X' k( X% ^( p3 ?
[ set best-direction 270
' u# d& V( I0 x5 k set best-amount grain-ahead ]. x8 E: y/ _- I- E! K. R5 `# F
set heading best-direction
, }0 Q0 v1 ?0 B4 hend
6 p% T7 u, a. S& m" [9 Y8 s7 F1 G/ W1 w9 O" ~
, K+ P9 h4 a& d, n7 @
to-report grain-ahead
5 W/ k+ X. W/ d$ s) g) U: J let total 09 R% D( [+ |1 c& x' x$ A1 ]! y
let how-far 1- e1 p9 z) Z( v
repeat vision
# ]! `, x: o" p7 o4 Q [ set total total + [grain-here] of patch-ahead how-far$ u: R- w' W; J; Z
set how-far how-far + 1 ]
' `1 v+ T/ l* L' d5 @, V9 a# ? report total
" j7 [# r: m, K8 Pend" J5 {+ z- l+ h/ ^5 h1 |0 t( ~. {
" E9 |2 w X/ S9 l, E" K0 K
to grow-grain
& s3 Z0 n" w6 Z* B9 w6 v( y. o if (grain-here < max-grain-here)
6 d6 o( j+ u p' `3 t# G4 | [ set grain-here grain-here + num-grain-grown
+ o2 k0 c$ D6 [9 y! I if (grain-here > max-grain-here)
! [ A( f @- K- s [ set grain-here max-grain-here ]
6 I/ V, S( T3 [2 w recolor-patch ]
6 h6 x9 G# l' Tend3 @9 V! [1 f' |' n3 c. _
to harvest$ I# {; ?& c; P8 Y: ^, k
ask turtles
- c4 D" y! b) X8 N/ S [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
7 X2 P2 O1 A8 Y# t0 c' C- m ask turtles0 r# |+ M X, V% i }
[ set grain-here 0- P; o) S- `% V( K+ d# R) h8 z
recolor-patch ]
3 K) Y+ X0 t/ w9 x 9 {+ Q% `- E4 O k' ^
end
9 ?$ M5 C3 A+ F X1 j, e" E( ]5 X& f# K1 x
to move-eat-age-die , v7 t4 L6 l3 b# F
fd 1
- ]7 r! c4 I# V" s set wealth (wealth - metabolism)
2 a) j6 s' p6 G; p+ z* U) C set age (age + 1)
2 |1 L5 x1 K' L& j if (age >= life-expectancy)% B1 ?3 o& X$ h1 ]
[ set-initial-turtle-vars-age ]( Q3 _. h5 h8 c6 f# n
if (wealth < 0)
6 y0 z0 S2 f& k8 y' Y5 v F [ set-initial-turtle-vars-wealth ]
, d5 a. Z r& Q$ I3 t# W% f 9 D% ~9 C; u; c
end
* O; e# z z, g2 x0 S3 U% j1 ]6 x/ O* T5 b Y3 A I- v
$ @# C+ t0 ^) G1 m7 K8 g4 a) }8 vto setup-plots( t. [3 ^& Q3 `4 T8 W* ~ h- Z
set-current-plot "Class Plot"
2 q# N2 S+ B/ @( V, l5 D+ r# w set-plot-y-range 0 num-people* C5 K, k0 v( y+ P% b, j
set-current-plot "Class Histogram"% ^% {& [ g% n1 k; C
set-plot-y-range 0 num-people
7 \6 C0 X8 i$ N) k& @end
2 o3 q' U' t& ~% R: k. D d c9 L3 A0 S) t
to update-plots7 ?+ F5 P+ q$ u' G8 T
update-class-plot
4 s& O1 V. w4 X9 H$ X$ E update-class-histogram
1 F! s$ v% j, w( \7 ] update-lorenz-and-gini-plots8 U4 { Y1 @; A2 H3 `
end
I7 l' ?6 u4 i! k8 [" v3 U; U1 X5 e9 N" S3 k' o: q! C- p
to update-class-plot
% A" m! r, D D1 O set-current-plot "Class Plot"
3 K7 p$ Z- r1 [: f4 a$ n set-current-plot-pen "low"
* C$ Y6 U0 j2 P8 `! q8 D2 T plot count turtles with [color = red]
$ M' o# I' P x) H$ m) h set-current-plot-pen "mid"" o C+ l9 ]' o2 q2 L; Q
plot count turtles with [color = yellow]
3 z7 `/ A) B1 [7 L0 P set-current-plot-pen "up"" u* g$ p% @ h7 F' T6 T
plot count turtles with [color = green]! q3 t- r5 M( I3 C W3 q/ X
end" I# M" R" V( a& V2 ^
: H& x# ]0 D! ]' L2 m' ~! v) K" qto update-class-histogram& T% `. e$ @& r1 e7 Q7 X+ }2 H% [
set-current-plot "Class Histogram"
) z1 V3 z+ n! P% v plot-pen-reset& F4 X( }' U( T: \' [1 Z
set-plot-pen-color red2 x5 P" U+ M7 t
plot count turtles with [color = red]! X6 O# w5 `$ l2 _
set-plot-pen-color yellow
5 Q$ E, T8 ^" k5 h7 y2 T6 d plot count turtles with [color = yellow], {0 C. L1 D1 \( i1 A
set-plot-pen-color green/ g- O2 z* `/ l1 f4 H: I
plot count turtles with [color = green]/ s9 v5 q- V3 `6 A# z
end
% H# O1 Z% N2 Y) L0 V: G9 dto update-lorenz-and-gini-plots
% N4 J& D1 G0 C6 D1 ^6 ^ set-current-plot "Lorenz Curve" |: G1 U6 L: B$ @/ q
clear-plot6 `0 Q/ J& c5 ?6 I: r9 u
2 t6 U/ P% K- K$ Y; Q5 L9 L
set-current-plot-pen "equal"6 G! t6 r5 @. P# g3 R1 _, g
plot 02 m: O3 r6 t. D/ w
plot 1006 y8 }1 h: n% c# T$ ~5 T/ Y7 \
; F0 {4 z, m7 V: L set-current-plot-pen "lorenz"
; K. k' L. L; U set-plot-pen-interval 100 / num-people" C( ~0 ?' F$ u7 E I, l1 i
plot 0
. l2 V s5 ]" }( N* ~$ X4 }- X
) y' h# ]0 N& e3 _ let sorted-wealths sort [wealth] of turtles3 f( {$ g" i6 m$ R. D; A) }. I
let total-wealth sum sorted-wealths2 w' w* [8 J+ O4 T
let wealth-sum-so-far 0$ o( T" k( W7 m
let index 0, G8 k! E, I$ h
let gini-index-reserve 0
1 @" k4 i% h# h8 m
- D- l1 m) m1 A) x7 h: c repeat num-people [
3 q2 a% b/ o6 q3 `; j4 Q, J set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
# i Q, t0 x0 f6 U. J$ z plot (wealth-sum-so-far / total-wealth) * 1005 @$ `$ r' R+ `6 Y9 O: L6 @( z& c0 ^
set index (index + 1)
6 k: S+ S$ t" x; @3 |+ f* T set gini-index-reserve: |9 V4 \7 v% M! @5 B# }8 |8 H
gini-index-reserve +, `' ^2 o6 M, D8 m6 _3 i
(index / num-people) -
V w, w. \, i2 t (wealth-sum-so-far / total-wealth)% f: Y+ Z5 X5 A7 i6 y& s; n
]
9 Q# k8 ~, L. s, Y$ R( E6 r$ ?; S3 w! y+ a7 B5 {( w! D; ]
set-current-plot "Gini-Index v. Time"
% W4 r. x8 P; C. b7 P6 A plot (gini-index-reserve / num-people) / area-of-equality-triangle
4 {) s" E0 ?; t4 o+ send- r/ K9 B- X6 c A5 {1 ]* h! d* M
to-report area-of-equality-triangle
( S/ M, y" a: K% Z; E report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
- N% [4 A! G- A% V" }# i- eend |