请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现: z& }8 ` [8 F/ }
globals
1 ^* Q6 k; f X[
; M0 g, a% e, g" u8 s1 E' t max-grain , E' m/ R- t* g; h3 A
$ Y% `" L( @3 ^* P]
: w! |$ j7 f/ A" s& t- Y* O o7 _+ X
patches-own
; _/ Q8 b2 |* g+ B+ \6 y! t* N[
, b+ I; s2 A, w, j" { grain-here 4 k! r9 m% k. q8 e Z0 {5 }
max-grain-here - l- ]6 a) h5 r: G4 e, P
]
. _$ N- [- }( `( u4 u3 h) k
q; s2 e( ^( L4 _( |' Eturtles-own2 B ^! ?* l, x, W
[* ?6 b) T# [& a
age
+ w: o9 C6 x/ h+ @5 B, U( A wealth
4 \' P" J( w1 x3 v life-expectancy : u0 C8 H# C- T' u! M( A
metabolism
+ e) ~. d5 M* d vision
# W0 W; W6 ^" @$ Y! W5 b+ \( n inherited ' C7 h# C8 r; G: P |
]2 l0 M8 t! a! `" u3 W5 ^/ H# U1 s: W
( v9 n L1 L6 P' z- H- ?
$ `. J8 |/ K+ p2 W9 g3 F! Y$ f8 K
to setup& T; q* x) a- H' X
ca" j) \' g9 X/ L" F/ O
set max-grain 501 E* C* g$ z C
setup-patches! i( O" P/ M; b
setup-turtles
" w% _, p; x1 \! @3 h setup-plots
5 H! X2 s+ S+ i% W% B update-plots
8 [0 O8 Y( K! G& K4 k0 k' Vend
8 O* Q4 k- |, `% r0 kto setup-patches
, @/ R+ e T" E, {4 h ask patches6 w( ?9 X* ~3 y6 v/ z
[ set max-grain-here 0
8 m2 c7 o# E* ]6 d. p, h4 p if (random-float 100.0) <= percent-best-land
; c c6 Z) L4 y# X! P" f. p [ set max-grain-here max-grain7 `* I. u3 \2 m' X: d* M
set grain-here max-grain-here ] ]6 Z* S! [* k1 o& c5 u" f
repeat 54 E3 P( T! b/ w& M \
[ ask patches with [max-grain-here != 0]
' j5 [5 o: o8 d3 B2 l |% @8 f [ set grain-here max-grain-here ]' [9 \+ i& g0 p, C1 L) C$ X/ i
diffuse grain-here 0.5 ]
( C$ V+ E# u) u. R repeat 10+ ~* }2 D s0 C/ o0 ?5 `" n
[ diffuse grain-here 0.5]
% S+ t7 K9 a& P. r ask patches
7 F$ R0 v8 f0 g6 P! s! k& e [ set grain-here floor grain-here
" t4 f2 M! ~' w/ {! F7 S set max-grain-here grain-here % Q7 m) |, E; |" F/ b; s
recolor-patch ]
1 @8 X! _7 j z2 t( F/ u! _ Uend
: z5 b$ `+ Y! ]" N* y* _4 ]! qto recolor-patch
5 ]' a' ~: W: P5 R" b set pcolor scale-color sky grain-here 0 max-grain, q3 [' f. B* p, g3 y4 U/ k& Y
end# i0 @1 `; |; }
to setup-turtles
, L' P/ p* r" J: F8 n/ g. X0 r set-default-shape turtles "person"4 |# _4 F& u# u8 E2 v) ~' X( e0 x
crt num-people
4 K8 X2 Z% p9 }7 F! n [ move-to one-of patches 8 ?& |5 |. x t2 n
set size 1.5 6 y6 ~: h- J3 }/ u
set-initial-turtle-vars-age
. g3 u: B; f8 W4 [ set-initial-turtle-vars-wealth7 I2 c! t$ i4 m9 C: {
set age random life-expectancy ]
/ J4 B7 Y( V/ s, `; m) s recolor-turtles+ k1 B$ @* B( p1 X1 U7 N
end# Y. g) c7 x1 S1 r
1 R/ ^1 g' }! k& nto set-initial-turtle-vars-age
3 W$ A, l4 [ s e let max-wealth max [wealth] of turtles- E4 G( j& r9 B! [" |. f. u
1 P9 r% F! m8 C% {* z1 ?
ifelse (wealth <= max-wealth / 3)- s0 P8 w8 t, h% B/ U ~
[ set color red
7 J5 g' A0 n5 i# R m6 { set age 0
$ U& W8 a* ^, Q8 k0 Z- M7 x face one-of neighbors4 # l1 K# {7 ~( h, S. \. o
set life-expectancy life-expectancy-min +: ?: _- }2 ^- Y
random life-expectancy-max % |9 c, U) [1 n$ G0 f2 N, V* j
set metabolism random 1 + metabolism-low
& e: `: Z3 g, w% A+ ` set wealth metabolism + random 30
& { m+ f+ v4 i0 I" ~& Z) p set vision 1 + random max-vision
: R6 k8 w9 j! q set wealth wealth + Wealth-inherited-low ]% A' k* t4 O( v* |
[ ifelse (wealth <= (max-wealth * 2 / 3))
. J( r/ \0 m$ l. f! s [ set color yellow $ G1 `( C# [. V3 S
set age 0
1 E& l# F' X4 u$ W face one-of neighbors4 $ B3 f( q! m; w( u# ^
set life-expectancy life-expectancy-min +3 O2 @( @& u8 M u* J9 w/ i
random life-expectancy-max + 1
j; t% z7 C7 Z( a set metabolism 1 + random metabolism-mid
3 @; c0 A; D+ F set wealth metabolism + random 30! k4 ~4 q D6 L: H* J* {
set vision 3 + random max-vision
) H( S3 Z! C) \( a- v4 a set wealth wealth + Wealth-inherited-mid]5 T( N0 k7 ]6 w( w# C+ l- J
[ set color green
+ H- `) T# w* Y# F5 V: b1 m$ t' P set age 09 |- L( i M. \
face one-of neighbors4
" J& x' }6 ^! g9 [ set life-expectancy life-expectancy-min +( r% e1 Q) P% \% s! S( V
random life-expectancy-max + 2
+ Y& |8 T" j5 B, M7 n/ J0 {# d3 h set metabolism 2 + random metabolism-up
: A7 ?2 B- r6 J* p- b# X set wealth metabolism + random 30
8 `: ]$ I+ ?3 E% Q& a2 r2 g+ l set vision 3 + random max-vision
' W8 N! L8 U3 ? l0 o3 x6 U- g set wealth wealth + Wealth-inherited-up ] ] # `; J1 h4 U. h& h- w& J( b' u. Y1 M
8 W& D* t, I' \' [
end
7 U+ w8 j7 C/ M% [) |to set-initial-turtle-vars-wealth
- K0 B+ ^: A2 f/ N$ j let max-wealth max [wealth] of turtles/ I0 p6 j0 [9 f
set age 0) X/ ? V ~3 ~. ^0 F3 t0 i
face one-of neighbors4
, u) P% [% U- I4 t; \ set life-expectancy life-expectancy-min +3 e) C! N/ R& Z* j
random life-expectancy-max
( g) L% o5 G5 _* f& y set metabolism 1 + random metabolism-up
2 m& W' x3 U% n* e0 ^- w5 W1 M set wealth metabolism + random 30" V9 ^% K* o! {$ A4 `
set vision 1 + random max-vision ( q: w+ o. Y; q7 b3 l
end
( p. N( ~* S4 Yto redistribution7 r" [ [: S! O' H
let max-wealth max [wealth] of turtles6 O( x' Z! n! s$ O3 x' U8 O
let min-wealth min [wealth] of turtles
: I7 }% u# s1 K' Cif (wealth <= max-wealth / 3)
. e5 O' N% B( V/ v6 m) N [set wealth wealth + Low-income-protection ]
9 ^% S8 P; X' s' Z+ j5 T" S+ _. {2 \end1 V( P& Z7 f# V# K; O' O, S, a
2 A, ^( E# M! w* h8 K8 @* \) d5 kto recolor-turtles0 t" y( N/ q1 a) W1 ^9 r/ Y& z
let max-wealth max [wealth] of turtles4 U7 @/ ]& x, W+ F) ^2 u" j
ask turtles
1 h1 E1 A1 L8 q* G: R+ c [ ifelse (wealth <= max-wealth / 3)
8 G0 G6 g8 U; k$ f$ [0 a/ p [ set color red ]/ l% X9 M& k- r& |& Q
[ ifelse (wealth <= (max-wealth * 2 / 3))0 v& V8 W+ i# V+ X
[ set color yellow ]
, B8 Y f. J8 g [ set color green ] ] ]
3 x6 h. N8 S) {4 p ask turtles [ifelse show-wealth?
& D. ^: ^ ?/ ~3 c" p+ F# J" ? [ set label wealth ]3 r" S& u2 d" Y! B% n* m, p
[ set label "" ]]
. m3 s% i3 [% i! eend6 S- h+ ]/ q& ~; `& L4 D
/ K/ r p6 q$ p* w( rto go; l# F: d; N* O) b
ask turtles
- Y! v3 P( @/ E) l" \4 e [ turn-towards-grain ] 4 C$ H3 r8 [! [1 A5 N1 o N3 t! `4 ^
harvest! t% H3 S& c3 \$ \7 J/ Z
ask turtles
* A2 l7 j$ u T- M+ }% s/ e' [ [ move-eat-age-die ]- @6 v2 A# ~# L5 T$ W, \
recolor-turtles
- ~1 S4 b* |7 X2 n# o1 q+ \ if ticks mod grain-growth-interval = 0" `! H$ c$ m' ]) U) a% q5 p& s5 u# V
[ ask patches [ grow-grain ] ]
, f4 U2 @# L3 ]0 s ' t& X" ]7 ^2 P* {7 t
if ticks mod 11 = 0
}) {# X$ W3 v; f [ask turtles6 `. i8 w! h: @! ~7 n; z2 j
[ redistribution ]]8 M! Q7 i( I4 I: R" T
if ticks mod 5 = 0
( F( m0 u* p" R1 F, p, R [ask turtles
6 \$ `2 Z! E; e) D, [# H [ visions ]]
, E- P; t8 Q% f0 E4 W: ~ tick
- w ~4 E. g* U update-plots+ O" ^2 a9 d3 @! k+ c9 q# t) E" w
end4 ^" @8 M f# a. n+ \- f8 G5 b6 @
to visions8 q0 C9 g* V3 ^2 r
set vision vision + 1 9 q! z& u: J0 Y2 P; m
end& t* {' H. o7 H+ s6 H
/ u* V9 {2 O% L& N; F# B9 C9 b3 e8 ] v. z9 p" `
' l2 p3 P: D" u9 R- O$ }7 cto turn-towards-grain
/ t; ]! S! L! X3 ]! X( B3 q$ S: a* Q% c set heading 06 |0 Y! h5 k: R | f: G2 U- x `) j
let best-direction 0( B8 @4 G9 C( i* M& N% x1 S* t. D
let best-amount grain-ahead$ U$ j+ x/ L7 J6 c
set heading 90
1 K1 V/ @: r3 p3 J) J c if (grain-ahead > best-amount)
$ J0 m9 d2 V6 K( { [ set best-direction 90$ E3 }" t0 k1 C' [- Y) A
set best-amount grain-ahead ]5 p) g7 ?* a7 S! ^4 X
set heading 180& W! Z! f* s3 q" _( R
if (grain-ahead > best-amount)
% e8 n- a/ L/ R* ^) i [ set best-direction 180$ V" Q9 f9 H1 E1 T- G5 ]( P( E$ w
set best-amount grain-ahead ]
' ?, C- N% S9 m8 c set heading 270
" f4 P: Z5 S# u7 e! r if (grain-ahead > best-amount)$ ?6 N& \5 y+ q( P- e3 h
[ set best-direction 270' `& y1 v" T; t/ _/ h2 [1 ?
set best-amount grain-ahead ]: \. T* y2 l8 g1 Y
set heading best-direction7 ]8 ^' D3 c7 o2 \$ A; T) w( p
end
8 o$ n9 S" G3 e2 C* Z& F- @5 c& W/ n- _% Y$ L; v$ `9 c
* C! j0 X/ ^ k4 L; H# K9 ~5 Rto-report grain-ahead 6 p, x- A* {7 i5 G
let total 0
$ U5 D Q" Q: [6 k let how-far 1! _$ R) N, A# x3 @7 Q
repeat vision' T. `# K; r! N6 {; a) I$ a
[ set total total + [grain-here] of patch-ahead how-far
, |- h# ^8 D" a) K$ T5 N( o set how-far how-far + 1 ]
, G8 H- `7 r' |" o% N2 _3 a/ M" n- K report total( x1 w# C# E* u6 G# @8 Y6 v5 i8 Z
end
' W; K5 k% @7 e; Q* Z5 c" d# u: g0 P( g! @( G
to grow-grain $ k2 ^; C$ Z8 l4 I6 Q; P( O1 x
if (grain-here < max-grain-here)
) n3 j- R8 O x [ set grain-here grain-here + num-grain-grown
8 t9 d6 Z8 u) K+ d- Y if (grain-here > max-grain-here) # q4 y0 K6 g" P# l. C
[ set grain-here max-grain-here ]
+ J+ b$ f) X! S2 i recolor-patch ]) w: \1 i& y) x/ Q1 Y
end( ^5 }9 X. n" i, z+ O
to harvest. t# R/ V; z+ ]7 U8 N4 p
ask turtles
2 O6 X, s% ?1 j: {1 b0 L [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]0 U& D$ G% `) a- s) ~( X Z+ e) T
ask turtles
: u. ~' I! N3 B, S% l. F [ set grain-here 0) y+ x" a# Q% d+ `) U. T
recolor-patch ]1 E- B% I. S2 G# i. u# m% ]# X& c
" c9 r2 w: D p9 w' y7 Oend U1 {6 l7 x0 G/ Z( v9 H
7 n# f# J3 B3 wto move-eat-age-die . ?5 R: _* W9 y, Z3 P
fd 1, |2 Y6 A) i# D; H ~
set wealth (wealth - metabolism)
" {# J- c0 h# l; @$ t set age (age + 1)
% q$ X; F: l0 [- T4 E if (age >= life-expectancy)
8 d# Z4 _4 U# i, } [ set-initial-turtle-vars-age ]4 e# W8 b5 U* H
if (wealth < 0)6 D' \% Z! _- c
[ set-initial-turtle-vars-wealth ]
n: j1 M; b2 T3 e9 g/ f 0 ~2 h* d" Z: i6 w6 Q
end
' h( k: t- ] |, N* e0 P
# k \' H+ B) Y2 d& ^( D R- C1 p4 ]; g: \6 P
to setup-plots
+ d2 Z! T* Y5 J3 M1 i set-current-plot "Class Plot"0 r3 |1 n+ p- o# P h
set-plot-y-range 0 num-people
; _6 N" Z' `# f% E' ]& Z set-current-plot "Class Histogram"
5 h% b+ Q' b9 J7 M. s set-plot-y-range 0 num-people
, L5 M0 K& ?; ^& j/ Oend
$ @! k J3 \/ a9 y( Q; _% {5 u. B& x7 n% z0 d! I- l
to update-plots
9 M# _/ K1 H, U: p update-class-plot
# L# L6 V3 X3 |8 s$ S5 h update-class-histogram
9 f Z9 n8 _+ B# K. Y* B; E update-lorenz-and-gini-plots
5 `+ |8 ` q( dend6 x( v) m% B; q: r. U0 Q1 d
- O. T) Y d9 _! \to update-class-plot
& E. V4 ]2 u; L- t" s1 m- T f8 T set-current-plot "Class Plot"
' b/ F- o6 Q( X% e/ W set-current-plot-pen "low"/ x, n) R1 ?% O3 Q8 S* X% Z7 ^% k
plot count turtles with [color = red]; m+ w0 C1 i1 G: ^
set-current-plot-pen "mid"6 }, |: n3 `( v, W. @- d
plot count turtles with [color = yellow]1 N" I& o* A N: x5 k
set-current-plot-pen "up"
* c. ?0 D; S! \7 h# x plot count turtles with [color = green]& Z1 w: l. A* w$ z8 W- `# v
end& k- K" i8 O, k% k( _
6 o0 a3 i$ j1 f {/ J9 Ato update-class-histogram
1 D2 M+ G7 z8 U2 j: q; y! s set-current-plot "Class Histogram"
% |2 B, ?6 v' b+ L" Z3 w% G plot-pen-reset& M0 w- \( l" N* l( ]
set-plot-pen-color red
B0 m2 ]8 Y$ Z- | plot count turtles with [color = red] ^: h! {, ~9 C( A& ]0 w# m
set-plot-pen-color yellow0 D* g4 |4 I+ F& S, s
plot count turtles with [color = yellow]+ U, }- @1 A1 | y/ i1 i# I
set-plot-pen-color green, A* g6 T- m7 B. ]9 G- A
plot count turtles with [color = green]% B7 r# U. Y- m2 ^
end3 U% Q- ~3 I/ k% y- S, _ m' D
to update-lorenz-and-gini-plots
: t4 t, M% }' L q0 s set-current-plot "Lorenz Curve"7 R. {+ p) B! p
clear-plot
2 o: J/ I5 n2 N) a5 y, n9 Z7 u# \
" C+ N# S1 ]$ }3 w% {# z$ I- G set-current-plot-pen "equal"5 n9 d* i0 i) C' n4 v: X5 n/ c
plot 06 N1 m5 k' h8 k0 c
plot 100
) N3 d: g3 Q# {5 Y# k
1 g* i. m0 B" a5 G+ [ set-current-plot-pen "lorenz", r- o, q7 P0 ?) W- V- k
set-plot-pen-interval 100 / num-people+ o; A7 Q; X6 D0 ^: n, ^
plot 0
. }0 L: ~$ C* _) o7 j# F7 J) ?! O
' F3 {: N2 u) h. T" s0 _% X let sorted-wealths sort [wealth] of turtles
g7 \# E8 W2 m" C/ d% M! A let total-wealth sum sorted-wealths* T. D; R4 N5 S- n& [# f4 b6 H# k
let wealth-sum-so-far 0
* c3 w" s% r2 H# a8 s let index 0
; {- w, w4 ^: N8 p. l5 c, b8 l let gini-index-reserve 0
; \5 e f" H/ } o. v q6 o, i: P- l& F+ e/ d5 {3 T
repeat num-people [, \/ c& T4 g/ Z
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
3 X2 F5 m/ l& {9 S; s plot (wealth-sum-so-far / total-wealth) * 100 r d/ ~) q# p
set index (index + 1); x' h% Z6 Y0 w
set gini-index-reserve
; {% N4 t A8 @+ W/ Q gini-index-reserve +% _6 R# ~9 O0 q7 x7 h
(index / num-people) -' Q/ a# f7 C2 h" V3 X% I
(wealth-sum-so-far / total-wealth)- ~4 u7 o& `# G. _1 H$ G
]
9 C; l. s" ^1 g5 z0 X
0 f; g; F! |9 J: n# W- h* a set-current-plot "Gini-Index v. Time"7 N; U1 \# w |* |3 A
plot (gini-index-reserve / num-people) / area-of-equality-triangle
6 y8 Q" N8 z8 E+ a( N3 Send
+ Q1 w. B, x6 K$ T. ?* cto-report area-of-equality-triangle; e ^9 p- W' M. c }9 V# i5 F
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
9 w9 `3 c8 B6 jend |