该系统为生产和库存系统,车间有4台机床,4台机床功能各不相同,每种机床只有1台。共有3类零件需要加工,零件按指数分布到达车间,间隔为10分钟,零件比例及其加工工艺见表1,其中加工时间服从三角分布(min)和常数,根据经验收据,第一类零件在到达工位以及 不同加工工位之间移动时所需时间服从参数为(7,12,15)min的三角分布,其余2类零件在到达工位以及不同加工工位之间的移动时间服从参数为(8,10,12)min的三角分布。加工完成后都要经过检验,检验时间服从正太分布,见表1,其中有两台检验台,检验台2有条件开启,如果检验台1的队长超过12就开启检验台2,检验台2一旦开启,要工作1小时,再停止工作,根据以往数据,检验合格的产品为90%,不合格的产品10%,要经过一台综合加工中心进行修复,可修复3种类型的零件,修复时间见表1,该加工中心需进行定期维护,每工作50小时进行1小时的维护,而且随机故障会有发生,服从间隔为100小时的指数分布,修理时间为1小时。经修复的产品几乎100%合格,合格的产品由2台叉车搬运到零件库,搬运批量为10件1批,搬运时间为20分钟,叉车1只搬运零件类型1和2,叉车2只搬运零件类型3, 6 C- |; d$ M) q( [' |; F+ B
表1 各种零件加工数据* E5 o5 D; o# K/ x7 a
零件号 百分比(%) 工序号 所用机床号 加工时间/min 检验时间/min 修复时间/min+ m" ]( f+ q9 p8 v
零件1 33 1 机床1 10.5,11.9,13.2 N(8,42) 43 B* Z* H+ h A% \% x
2 机床2 7.6
: p7 ~0 z; F$ G+ S 3 机床3 8.8 ) R4 J1 O' q) _7 M
4 机床4 6,8.9,10.3 2 U4 \9 Z% o7 K0 T& d3 z. b
零件2 50 1 机床3 7.9,9.4,10.9 N(4,62) 5+ e% p( A3 ^7 F6 l, n0 G8 a( p- t+ X
2 机床4 9.9 / J. }8 Q) ~1 ]5 q
3 机床3 8.5 ) F- w+ o/ N/ L( S# y/ j
4 机床2 6.7,7.8,9.4 ) y P$ Y! n6 b6 B% n3 ]
零件3 17 1 机床2 7.1 N(6,32) 8
) {$ t& m# w8 z9 r; ]9 X* { 2 机床1 7.6 " o. Q' u9 q- v) J0 y v* ~
3 机床4 10.2 7 S5 O0 {& j" a0 l4 w
1 [, G3 V& C4 O7 L8 c. ~7 {. \+ s 装配线对于零件1,2,3的需求,每次需求1件,服从时间间隔为Exp(8min)的指数分布,需求概率分别为P1=0.2,P2=0.4,P3=0.4,零件库3种零件的初始库存分别为Num1=20件,Num2=30件,Num3=40件每件产品的持有成本为每天每件2元钱,缺货成本为每天每件8元钱。- \4 f, s* D8 V% T+ B
运行仿真模型360小时(15天,每天24小时),仿真次数10次,试分析:# q w+ T& p1 y- l6 K" s+ u( h
1、建立该生产和库存系统的仿真模型;分析系统生产效率,各工位利用率等性能特征;
3 S% w& h& P' w, Q" e+ G2、3种零件生产周期和总体的平均生产周期分别是多少?6 L, L9 e, W2 f* r; @
3、求各零件生产节拍及产能(进入产线到检验合格)?
7 h3 w: w7 `3 T' ~# \4、计算每天储存成本、缺货成本的均值和置信区间?# [! u, @7 X$ g- t% U0 p
5、系统存在哪些问题,请根据仿真运行结果进行分析,并提出改进方案。
) a) j; U9 e T H2 c1 y6 o6 x: s; M(注:可以改变生产计划,零件的到达时间间隔,投产百分比,叉车搬运的批量和搬运时间等,以求得最优的库存成本方案,同时还应满足,零件的平均生产周期尽量要短,各工位的利用率要高等,总之,就是要使生产和库存系统达到最优。只要认为是问题,且改善方案合理即可,同时对改善后的模型进行仿真优化)
1 \$ E7 \& T' d8 S4 ~6、在完成系统建模,仿真和结果分析的基础上,撰写仿真分析报告,提交仿真模型(仿真优化前后的模型,如果有分层,请将分层前的模型也一起提交)及报告。8 M4 l( J8 T" f
|