设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 6502|回复: 0

[求助] 仿真习题求助大神们

[复制链接]
发表于 2016-12-12 14:56:47 | 显示全部楼层 |阅读模式
该系统为生产和库存系统,车间有4台机床,4台机床功能各不相同,每种机床只有1台。共有3类零件需要加工,零件按指数分布到达车间,间隔为10分钟,零件比例及其加工工艺见表1,其中加工时间服从三角分布(min)和常数,根据经验收据,第一类零件在到达工位以及 不同加工工位之间移动时所需时间服从参数为(7,12,15)min的三角分布,其余2类零件在到达工位以及不同加工工位之间的移动时间服从参数为(8,10,12)min的三角分布。加工完成后都要经过检验,检验时间服从正太分布,见表1,其中有两台检验台,检验台2有条件开启,如果检验台1的队长超过12就开启检验台2,检验台2一旦开启,要工作1小时,再停止工作,根据以往数据,检验合格的产品为90%,不合格的产品10%,要经过一台综合加工中心进行修复,可修复3种类型的零件,修复时间见表1,该加工中心需进行定期维护,每工作50小时进行1小时的维护,而且随机故障会有发生,服从间隔为100小时的指数分布,修理时间为1小时。经修复的产品几乎100%合格,合格的产品由2台叉车搬运到零件库,搬运批量为10件1批,搬运时间为20分钟,叉车1只搬运零件类型1和2,叉车2只搬运零件类型3,         
$ `' V+ R/ j0 |4 H                               表1 各种零件加工数据
( Q3 L5 Q9 y# p零件号        百分比(%)        工序号        所用机床号        加工时间/min        检验时间/min        修复时间/min# a. T) V  d3 n) }- W
零件1        33        1        机床1        10.5,11.9,13.2        N(8,42)        4+ Y. T4 J" O7 Z' O( r7 Y
                2        机床2        7.6                ( J) Z. y2 C, T2 U& ]% a4 `
                3        机床3        8.8               
  i$ ^( i$ o9 n                4        机床4        6,8.9,10.3               
0 r! `. U% }! }; ?! B零件2        50        1        机床3        7.9,9.4,10.9        N(4,62)        5
: `* [: i1 X+ p6 K                2        机床4        9.9                ( V) K' c4 B7 ^" F4 |
                3        机床3        8.5               
" Z( @! m+ A( M: u" Q- _                4        机床2        6.7,7.8,9.4               
7 {6 f2 s0 l: ^. d# l9 Q零件3        17        1        机床2        7.1        N(6,32)        8
, J% r, h' t0 e  L) Q: M' ^+ E! J, f                2        机床1        7.6                0 G9 U" z& w  g. z! B( f5 ]
                3        机床4        10.2                1 s6 e7 {& c# A+ L: j% d

/ U4 ~( M7 ^; _3 y* I0 ^4 E. P) a     装配线对于零件1,2,3的需求,每次需求1件,服从时间间隔为Exp(8min)的指数分布,需求概率分别为P1=0.2,P2=0.4,P3=0.4,零件库3种零件的初始库存分别为Num1=20件,Num2=30件,Num3=40件每件产品的持有成本为每天每件2元钱,缺货成本为每天每件8元钱。
2 M- s: B& z8 a     运行仿真模型360小时(15天,每天24小时),仿真次数10次,试分析:
& R2 A2 Q5 |. m1、建立该生产和库存系统的仿真模型;分析系统生产效率,各工位利用率等性能特征;1 F$ ^# R9 Y& j+ I" r7 w5 ], h  _
2、3种零件生产周期和总体的平均生产周期分别是多少?
: S& {. R/ M& b  c& O* Q3、求各零件生产节拍及产能(进入产线到检验合格)?  j; N$ X; D, a
4、计算每天储存成本、缺货成本的均值和置信区间?# U! q1 {) N/ L3 b* q
5、系统存在哪些问题,请根据仿真运行结果进行分析,并提出改进方案。  L4 o$ `1 T" ~# S$ y1 ^( ]
(注:可以改变生产计划,零件的到达时间间隔,投产百分比,叉车搬运的批量和搬运时间等,以求得最优的库存成本方案,同时还应满足,零件的平均生产周期尽量要短,各工位的利用率要高等,总之,就是要使生产和库存系统达到最优。只要认为是问题,且改善方案合理即可,同时对改善后的模型进行仿真优化)
  h# S* i3 M: o1 t& v# K6、在完成系统建模,仿真和结果分析的基础上,撰写仿真分析报告,提交仿真模型(仿真优化前后的模型,如果有分层,请将分层前的模型也一起提交)及报告。
6 }* K4 }5 p0 y8 o
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-9-13 22:29 , Processed in 0.013483 second(s), 16 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表