本帖最后由 GJM 于 2009-12-5 21:43 编辑
, r$ w$ _0 p. F0 {) q, x" k2 ~/ y1 X8 Z- T, @( x& A6 O
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
+ B* A0 R& X+ L# [, w
) y1 N! F) X# ~/ Z3 D0 x; ]不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢! ^& x T3 Q' t9 t$ @0 B
( n0 H5 h3 i, \5 L' m# e t z--------------------------------------------
! \1 K5 m. ^ R8 Ybegin P_something arriving, x; I7 f) l" P1 s& ?* o
move into Q_wait2 m. o# _, j# l/ K/ d P+ @/ `8 [
move into nextof(Q_mA,Q_mB,Q_mC): J! E8 U' m5 s
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
4 p% O! @2 n8 L; ?7 u6 H3 w+ L send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
; c# S9 e4 a- j! W5 F send to die
8 l- H) x) z }0 D- eend
" N& _# H4 w0 d: q1 Y+ U $ N5 d M: m6 S. {9 i' P
begin P_mA_down arriving
6 q9 c* y" ?3 G! V& P while 1=1 do 3 U' ?" |" F# A, ?+ R
begin- i5 x: |+ G! L
wait for e 110 min- M/ V- X* x% [% I, A$ _
take down R_mA
! y9 G7 ~+ N( R: ]8 y6 y wait for e 5 min
. c9 G0 \" H1 f" B! T& y2 |1 T bring up R_mA
- U* {! Z3 {4 D y- ]/ v' l9 ~ end. e5 c6 I) S( T, u
end
7 C4 O1 q- F$ e5 o! C: ]. V8 r
/ q+ E% ]8 f' ?2 l. _begin P_mB_down arriving5 }% z1 I+ ]. g5 \# q2 l% ]5 q; I' |
while 1=1 do
: Y ~3 t( J6 P1 a+ F; L begin6 ~* l* E' G# b* O( c1 O
wait for e 170 min
. Y8 B* Y; w$ ]4 D! p/ n take down R_mB
1 N; V- V6 m8 G wait for e 10 min
0 }' L5 Z/ S3 y5 v bring up R_mB
& f/ n' b0 m4 @* ` end; s0 t W6 H: ]- B5 o& ?1 H7 y* x
end
, Y7 X0 ^* X4 o7 R/ e. K ) d, ]/ E/ T/ N2 W
begin P_mC_down arriving
6 T; b( O3 h/ s& D while 1=1 do 2 F$ v9 s5 Q5 m+ H$ K4 Y
begin& O. T1 c( ?+ ?9 z7 N
wait for e 230 min
) v* T4 Q3 B7 C9 C5 U4 L- ^ take down R_mC
# `1 M+ o' i: C4 ^ |# L wait for e 10 min4 u5 {, u& l' a: Q! A) \& j9 m
bring up R_mC
6 \, a* F% W' a0 ^" t* w0 F end
4 E% a6 g8 j+ H! [; bend( @( a* A- g7 z7 k+ D: _* F; ?
6 l$ c! r5 C- P9 t& K
begin P_mA_clean arriving, h5 P! o' F" V' I4 O
while 1=1 do
5 L: y5 v5 V- T begin* _3 r$ }6 b4 {/ p' P
wait for 90 min
1 I( o, L4 J @- S take down R_mA
- ^% E3 d, b) D+ v; `* L& N' x wait for 5 min* P6 h( S4 \- w# o
bring up R_mA4 G4 O" S' ^; _) h# }
end$ M' X- T% y5 ~- r g( M. D
end9 I7 ~: w9 O! N# y* _3 p, M
1 ~8 d5 [! w5 d* O# a2 L fbegin P_mB_clean arriving
1 ?) ^$ M/ b0 h* N3 j while 1=1 do
- G6 d2 ~0 Y# J7 ~) P/ a begin# j* H) E+ d, i
wait for 90 min8 ]: `+ c* S7 k8 H
take down R_mB# p! B# ^) B2 w: I* ^, _$ s( i( z
wait for 5 min
* T0 _, j3 c$ w" g bring up R_mB# f, W5 F6 a D; h: Z
end
; y2 R( }- _% ]3 p$ Y1 Nend
' \' L* h! f9 [& @ o4 a
" T5 f; _2 W9 g8 i+ E0 N6 ~begin P_mC_clean arriving
% E$ E4 |7 e4 u0 e5 v2 S while 1=1 do
1 s' O/ D6 T8 v2 _ begin! K ~: n4 C7 B+ V, E% {/ E
wait for 90 min
+ M" }; }& U9 z$ \9 T9 v+ G) ~7 j take down R_mC: t/ t) i% ^: y$ k5 F
wait for 10 min% }8 m* c9 U7 U( |
bring up R_mC
; T% g, f4 W: n( j# h) q! J2 k end
, H; t% y9 x# S, }! E$ Hend# ~* A( S, ]# v2 }/ F4 E+ Z' f5 w
---------------------------------------- p& O1 Z8 j, {
5 R2 _& ~" w3 v6 n( c( S! \7 @Exercise 5.92 O6 p+ R- R, o6 r) ^6 L
# a) b3 y/ P9 h+ I( {1 P+ i* v' |' `1 x/ h% ?1 |
Create a new model to simulate the following system:
/ `4 U# y9 o' [: t6 ~# }Loads are created with an interarrival time that is exponentially $ g6 j" i2 C H V
distributed with a mean of 20 minutes. Loads wait in an infinite-6 Z: o3 C: @# ^7 Y4 A: y' b
capacity queue to be processed by one of three single-capacity, % J2 `" e$ E; X# O
arrayed machines. Each machine has its own single-capacity queue ! {4 u+ I% _# |3 Z
where loads are processed. Waiting loads move into one of the three , @, L7 S& L' b* P
queues in round-robin order. Each machine has a normally 1 v) s& |, x# E$ r8 c
distributed processing time with a mean of 48 minutes and a standard 4 W* h9 n( q! M8 k2 M
deviation of 5 minutes.3 ]* i7 B5 [7 L- K- K) @
The three machines were purchased at different times and have
, T* e& t. o7 R+ k5 L: Kdifferent failure rates. The failure and repair times are exponentially # n9 A& q# g/ u6 P% E
distributed with means as shown in the following table: 3 X) @ V" o0 `, z
Note The solution for this assignment is required to complete 5 ~5 `3 z% k) a3 n
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
) s* b8 D' k8 }' uyour model.
# }9 L* ?; M" y& v; t. I
I; h5 V( @( S# b2 ]2 bMachineMean time to failMean time to repair
% p+ Y# M0 G9 V5 {- P9 IA110 minutes 5 minutes
, ]/ d0 i/ F; A! ]4 X( D+ J2 l: UB 170 minutes 10 minutes# o8 G* L! C, i X5 }" }% o
C230 minutes 10 minutes
) K% M& t9 p* q6 B
% S8 m4 P! M. F5 _The machines also must be cleaned according to the following 2 h) _* E& r& h( }. d8 w
schedule. All times are constant: ' m3 a8 p% g. O% [
4 n. U& G6 z" H7 }
MachineTime between cleanings Time to clean/ o7 n$ h! U1 c0 G3 O6 T2 Y
A90 minutes 5 minutes
( L* R! E) g7 ^- H/ h6 m+ PB 90 minutes 5 minutes
$ D: `$ f6 _+ uC90 minutes 10 minutes
, s7 N6 j( ?( \- ~3 d% Z( `6 k! i, y8 @5 @6 Y- c6 f. C: Z3 x9 y0 k
Place the graphics for the queues and the resources.
: I- u) ?" c v0 k2 X7 X* U5 u, CRun the simulation for 100 days.
8 F$ {: q. J& J' j$ z3 K( d7 [Define all failure and cleaning times using logic (rather than resource
0 s8 r& X# u2 @# w1 hcycles). Answer the following questions:
) P# L& [5 z7 x# A6 _# |9 b& _: Ka.What was the average number of loads in the waiting queue?
: w1 c% U/ [3 m8 w) @b.What were the current and average number of loads in Space?
2 i! t4 \: _4 E' r y: s+ mHow do you explain these values?
1 t. T/ X; v$ z" T# ]. o |