本帖最后由 GJM 于 2009-12-5 21:43 编辑
B" M f9 s6 A) D% F- y; q0 c2 Y% N/ H4 m
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去4 v, B! i. g2 z1 e
8 t6 U7 D1 q8 W" a1 D. ~
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
0 k; B: v0 x8 k# a, F: h- [0 B
8 e4 a* ^& M2 Z( u--------------------------------------------
- F2 U# Q8 h6 ]begin P_something arriving3 k$ ~. |5 w' B d: _: _
move into Q_wait! c! d! Z8 Q5 `7 C
move into nextof(Q_mA,Q_mB,Q_mC)
& Y! J: F& F" y4 ^% G) z$ q use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min9 y5 s7 h6 k2 Z: e- J Q
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
5 `9 ]- q6 W, S& ?" G send to die5 q8 T T+ V9 u) y
end
) C3 Q; m9 o% O8 m2 A / l N' y% n2 s+ Y @9 I
begin P_mA_down arriving
, G1 b- A! t7 l6 S. q9 a) p while 1=1 do
6 G7 q" `. T# N* ~, G/ a" W! F' g begin
0 W# O( \, P+ m# C wait for e 110 min) \- N) p% f3 V1 g- e' E* F/ c6 b9 V
take down R_mA/ u5 n( o8 @0 ]7 @8 ^4 |. L. D( R9 I
wait for e 5 min
3 b* p- M. T" c. X L bring up R_mA
; X/ o& R, Q: F7 p. D( G end9 X" v( O* b% u {+ H
end- O% D6 p% Z- X% P5 u0 U
/ z3 G7 r5 T' t6 E3 ibegin P_mB_down arriving8 q4 h" E3 W7 n9 Y% E
while 1=1 do
6 n+ W& C7 j* a begin) @% u. G, l/ B6 B% P/ s
wait for e 170 min
1 G. d6 x9 Z# O% e8 Z5 O. G take down R_mB8 ^0 P# b! }# z$ w' E/ f1 |
wait for e 10 min1 {5 ], s6 k) B+ g! x! V" d1 G4 ~# t& _
bring up R_mB/ i, k1 K4 G) x* R& F
end2 o6 M" I7 E5 {0 _; \* `" G
end4 I) T5 J, x' H% P# O0 t) X1 i& b
; ^1 `5 g( Q) ] t2 Z! y8 W) }begin P_mC_down arriving
3 ?) E7 s& K7 u/ Z4 j- ] while 1=1 do
& S+ ]$ J C+ z% v5 |! G- R5 [ begin5 ^+ d4 [: G) p% n: H
wait for e 230 min- f' F. \, X! {6 {7 T8 p7 |
take down R_mC
' o8 [) ]; i/ V! T wait for e 10 min5 K3 i* I9 _4 {; E" d
bring up R_mC0 ~2 Y9 Z8 O$ r3 J f5 V
end/ r8 f7 B; m; A$ s+ J3 f4 E5 @
end
& i- a$ f# e3 J6 N+ {% E
8 H- f; n9 {) f( `begin P_mA_clean arriving3 y6 X% L6 [( P
while 1=1 do
; x* X9 I( n/ H- L3 M) v begin
9 q b2 E, F$ j/ K( f" b wait for 90 min
6 |% k2 v1 H" O+ L o7 j take down R_mA8 ^! r8 k! {1 U$ u1 U1 {
wait for 5 min" h6 r; S1 b. ^ }, c8 b0 K, ?
bring up R_mA ~% x1 Z; x5 Q0 l( S
end P; B9 o# [9 v1 T
end7 O$ h3 F6 n o. U" I/ @6 A- x
' M# H( p. r! W8 @* P
begin P_mB_clean arriving, t2 T& x2 c2 v( {3 ~) }
while 1=1 do
2 L: w) j/ V# c% u5 K5 V begin
, m% h2 c) D1 G wait for 90 min2 K. K/ q4 [$ \: |6 b8 X! _
take down R_mB
/ W* y8 c+ W: F# w; z- J! Y wait for 5 min; {- i/ X9 w3 k
bring up R_mB5 u1 {' J* B5 t2 ~4 x( [: q4 {" O
end- [5 W$ N1 e0 b% y1 ~: Z' R; M4 }
end8 T7 R/ c( `+ T* E! i/ Y' y
. p0 `% w6 i3 q9 p9 t) Rbegin P_mC_clean arriving
6 c( F1 Z' r) s+ P1 I- l while 1=1 do9 F+ U" f# ~' Z3 m$ E+ X: Y
begin8 t3 R; {+ O# G0 e. z M, p# k5 i
wait for 90 min
6 }. z8 Y3 x% B4 X take down R_mC, u0 A+ g2 K' b
wait for 10 min
& b2 F0 \; Z' a! C+ P5 ]" p. x bring up R_mC
$ V+ \6 v6 `. w% W& T$ t end
; Z* t0 [& o, J/ ?6 @/ Dend- ^: q6 S' V% l" I3 E
----------------------------------------& ~% J% q" v0 b4 @' i8 {! n
4 A8 @) R- H9 U+ F# JExercise 5.9. P( I; z& L' T
# f9 P. l& ?. ]1 \! x. a8 Z3 x4 S
4 K* f- B4 O/ v2 G( mCreate a new model to simulate the following system:
# g9 `, ]* P6 E1 [+ yLoads are created with an interarrival time that is exponentially . Q, b3 @) p0 J9 N2 T% l8 f
distributed with a mean of 20 minutes. Loads wait in an infinite-" E' N$ H& w4 J: F8 H; R/ i
capacity queue to be processed by one of three single-capacity, # S* z/ H3 \* ~( T- v* A. N
arrayed machines. Each machine has its own single-capacity queue
( B8 S' a' d* |' M* J& P! F' Rwhere loads are processed. Waiting loads move into one of the three
; d5 ]& ]0 ]9 h6 Kqueues in round-robin order. Each machine has a normally 6 D H4 q3 m% [) U% q. u0 w
distributed processing time with a mean of 48 minutes and a standard ! D" Y5 t! e: s, M
deviation of 5 minutes.
$ x, y8 c4 @) C2 Y: K) BThe three machines were purchased at different times and have & I5 e6 T! v! D9 m$ `$ k0 C
different failure rates. The failure and repair times are exponentially ) D! d) ~5 ]. J X2 v
distributed with means as shown in the following table: 3 ~: b* E- s' y8 x& s
Note The solution for this assignment is required to complete
8 {! O. c* ~3 j) o8 kexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of # P5 Y9 ^) D- A) s! t5 s8 H) k
your model. 6 g* _7 u/ C$ @2 {# s4 G
1 |8 t9 v5 J" @ AMachineMean time to failMean time to repair( y/ D+ g& ~$ ?& L" _& R: | @- u
A110 minutes 5 minutes) G1 j6 h& {/ b- n+ C, ~9 a
B 170 minutes 10 minutes
& s8 H; s" a( n2 mC230 minutes 10 minutes
. d' E8 g4 Y1 _! E' i
! R1 T. i2 a# P0 cThe machines also must be cleaned according to the following
7 p* b& p) s% Hschedule. All times are constant:
' R2 T/ G7 m3 c7 ~+ R3 I. G) ^" j; h$ c1 J0 v# \6 G: O
MachineTime between cleanings Time to clean
, I) ]% l: P- I$ Q; V8 l2 C dA90 minutes 5 minutes
' c# x' L [: B1 j. d) [: x: D$ AB 90 minutes 5 minutes
) u0 ]6 K* x m; xC90 minutes 10 minutes
# C4 {5 }5 P$ P$ C0 S9 w. @6 k! ]9 \
Place the graphics for the queues and the resources. ) F! H" b% p) L& m8 k5 t
Run the simulation for 100 days.0 A1 b) N7 e7 q5 A, I+ i
Define all failure and cleaning times using logic (rather than resource
" D p+ u6 t' y' p: |$ O" Ycycles). Answer the following questions:4 d2 V& G3 C* s: H& z$ l6 ?4 n9 d
a.What was the average number of loads in the waiting queue?# w& i7 Y7 _) P, _2 q5 i- i8 }
b.What were the current and average number of loads in Space?
6 ~& G) _9 w/ |* NHow do you explain these values?
6 r2 ]! B, K% u) u) g3 k |