本帖最后由 GJM 于 2009-12-5 21:43 编辑 ' z$ p4 O) z- N. f* V. l6 w
y+ L; E; E0 y- U底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去0 o: r0 N# L2 r7 U# _6 W
9 m/ k4 u1 h* n0 \! S2 e
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!# e' x9 Y6 U% Z9 n/ G
( ?5 B, d" F9 {/ g+ _% e
--------------------------------------------) ?) W. Z% f+ t0 L' V
begin P_something arriving
+ c8 C2 P7 d4 m move into Q_wait
7 E: Q0 X9 t6 v+ Z2 k move into nextof(Q_mA,Q_mB,Q_mC)
7 Z2 U, E& V1 E1 |/ r use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min/ ^: n+ m5 |! [) j" K0 j
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
# G$ |5 m4 N i5 I send to die0 ^# P7 T. w! a% m9 W: [& Y, m0 T
end
$ P1 t+ {3 P, _ & t+ o: K+ H* N3 `: l
begin P_mA_down arriving3 V' K! `% L$ e7 t
while 1=1 do
, A4 m: n/ N0 {, @% u; t begin8 J& |4 f% ~4 L( O H7 g
wait for e 110 min% I5 M1 K* I% J7 O3 L- D! y
take down R_mA
$ z) W6 n1 S- z& p) m wait for e 5 min7 R0 E u" g! F& L. v
bring up R_mA
9 `/ e, M0 ~- F% p end
2 A* E6 \% v% b$ p/ bend
- X( z1 D/ z! J& _8 {% s+ x1 x4 T
' Z2 ~' x3 n$ R" }7 {$ ~ w" sbegin P_mB_down arriving5 k/ I- p) |; B2 {+ l4 `- B
while 1=1 do
; ]- M% d4 C, d begin
7 O$ |6 a' r3 V: N8 b, | wait for e 170 min- N' c3 P8 ~9 l9 r
take down R_mB
' P B- t/ T/ {, z. S; W wait for e 10 min
; ]$ I5 f- K- i1 { bring up R_mB
7 t1 t$ ?3 Y+ K9 l- j$ I6 }& _* S3 w end
, `8 z( E0 x9 k6 S# oend- j5 ^2 l P/ ~: \1 y! I
& c4 ?' k; h l5 \; O
begin P_mC_down arriving8 h) K* O6 m; j2 z E7 L5 ]
while 1=1 do / w# V6 G* J0 e3 j8 p( a
begin
& C, b. M* c& O4 T wait for e 230 min
+ D/ @1 R, `6 \* r* v( o/ r take down R_mC
: F ^1 R; r, ?0 C) I; d( O wait for e 10 min
( l ?5 {+ G1 h bring up R_mC+ e7 ?. U8 L9 q/ U0 z& q/ b! U' b
end
; \. C9 \" Y/ d' K# _7 }8 e6 Z5 Vend b" P) {( u3 r9 M6 x% |7 u
+ D( ]0 E: X! L; c/ U4 ^! \ [( Qbegin P_mA_clean arriving
& h" y7 J# x+ e; H5 u% F while 1=1 do
: p9 d- [! y* l& }" l begin
0 a( C6 i* O& R' x9 m wait for 90 min
. @, [( _) E1 g, _3 ?& e3 z& D take down R_mA8 ^" }0 E2 z# W; i
wait for 5 min
9 I' m0 o/ D/ v- G: F bring up R_mA
# T' Z. h) L8 H: ] end
5 r$ @/ ^# U% a5 G# q! f# Q/ `end, c) @; `. G2 D. r4 z% ^0 {2 O1 {" G
# b, Z0 P8 |7 C5 R) o7 }
begin P_mB_clean arriving+ H& Q8 k8 L! `5 f1 K+ j [
while 1=1 do6 |8 o3 V# O9 G1 P2 X" F2 M% C
begin- l5 Y; o! F( {- m# }6 @
wait for 90 min) h* g# B, w* G6 w% f# r1 W
take down R_mB
) t" B& I3 V( z1 F5 T. \; u wait for 5 min
( O9 @+ Y ~2 c) [1 G bring up R_mB
5 `2 i) s& Y- K" x end
# i1 c2 Q! P; v$ y$ uend
8 Q6 L) a, \, r3 [; }. O$ T
+ P( V4 q0 B9 G; O( W% x1 Kbegin P_mC_clean arriving4 B' J7 L7 S4 u7 H8 W5 A) e2 D
while 1=1 do
4 F q% F E9 d% U" M begin* Z# Y5 I4 B: p% F: P+ v
wait for 90 min+ V+ V" c" c, O( x. Q
take down R_mC2 Q: B5 h( ~! X
wait for 10 min
" ]& g- F+ ^! Z* ?0 D$ Q bring up R_mC7 e ], f8 F" E% j7 P
end
$ x4 G2 N. @! H8 Iend
( k# o) O \ ^; ]5 [% Y/ F/ y----------------------------------------
1 F. m/ E; T( _ 0 L5 G* e5 I+ b. b, P: Y
Exercise 5.9 P- ?0 ]8 H; J
- L: g; d6 \# N; a- y! s: J" I" A) f9 W, T8 B
Create a new model to simulate the following system:
- Z9 f. D5 ^, A" @5 cLoads are created with an interarrival time that is exponentially 8 G& L! B1 i; R' e. u
distributed with a mean of 20 minutes. Loads wait in an infinite-
! w& Q6 |& u) k" a7 c+ f5 d9 Rcapacity queue to be processed by one of three single-capacity, & n3 w0 I0 X; m( L( A
arrayed machines. Each machine has its own single-capacity queue . S D) D. l( O
where loads are processed. Waiting loads move into one of the three * l% `$ n9 w- y3 X- P
queues in round-robin order. Each machine has a normally ) t4 v5 I) }& y1 d0 Z
distributed processing time with a mean of 48 minutes and a standard * u' i. _. @/ u! z; Q; b" Z9 O
deviation of 5 minutes.
; n1 W4 f0 b! ]5 z- fThe three machines were purchased at different times and have 0 `4 l1 A( `8 P( \
different failure rates. The failure and repair times are exponentially + f( M% t% V! H& b
distributed with means as shown in the following table: / p! N, r) t8 M0 J& [2 }/ ` v- @3 J
Note The solution for this assignment is required to complete
2 ` d0 N% |; u3 l: w4 t1 o8 Jexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
3 |1 _* f' ^& ryour model.
, M; y9 F+ G2 R. ?0 ^' w& _0 M4 O' w, p
# b/ [& f2 e- vMachineMean time to failMean time to repair
# P7 w# G, N7 ^& n$ MA110 minutes 5 minutes) T2 Z. n/ |+ R d7 v- W
B 170 minutes 10 minutes/ f* T: J: E4 j3 y3 |! w
C230 minutes 10 minutes
, n% P3 w, `, j( A( W
6 G# V% |1 n" y+ N0 {. y S1 [The machines also must be cleaned according to the following
8 P2 r4 H% U; l. y( {+ mschedule. All times are constant: 7 }; R9 f/ c3 H2 Y% \# V5 T
( d/ h3 I: A( t! @! F' _1 X
MachineTime between cleanings Time to clean. n8 s1 K- G% u5 B2 m
A90 minutes 5 minutes
* N+ Q8 f. X0 W# CB 90 minutes 5 minutes
! g8 a' {' t/ m* @+ O9 JC90 minutes 10 minutes& r: T" T1 W$ o5 G; ~2 g) e
" u& T' T* V% C. D/ B% g k
Place the graphics for the queues and the resources. + E8 Q1 a3 S+ c) T# J9 W' m
Run the simulation for 100 days.
0 U7 f; C2 @# c+ z' }4 ?Define all failure and cleaning times using logic (rather than resource 6 r6 |! _& A2 v
cycles). Answer the following questions:
$ J% P9 w. ]; ~5 t6 A9 \# Ba.What was the average number of loads in the waiting queue?' r/ F4 I$ S9 y0 ~
b.What were the current and average number of loads in Space?
. j0 Y# g% }. F- d# l& `How do you explain these values? - o" _) t# s, h' C5 L
|