本帖最后由 GJM 于 2009-12-5 21:43 编辑
- S, F5 c7 C/ h1 Y, W0 M" [4 g/ ?" Q, K! ?+ X% U
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去' }& ]! D# U1 X* w
' P8 |8 b3 I' L( w不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!$ i8 \) `% q3 Z m! g
, ~/ j# V7 ]$ v- T
--------------------------------------------8 ]1 E/ X, }% p( }/ u0 y
begin P_something arriving' s& e; A" y+ t; O! E7 w5 ^3 f
move into Q_wait
" C+ d$ j; h+ |' l move into nextof(Q_mA,Q_mB,Q_mC)
; f# R) j, }/ I: h `% F3 r use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min n+ V* w( ]2 S
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)- q! |# B8 d* b, ~+ X
send to die
, @4 I+ [: f% g. ?) h, G) Hend. V. p( H3 a& k: d1 i
/ n+ x. D3 n; j- T
begin P_mA_down arriving* |/ D" l0 w% T1 ?5 _- Y
while 1=1 do
) M/ X7 d0 z4 a) |) k& g! a. \+ g1 O2 M begin8 W t' C6 _- \( a, y) F/ E
wait for e 110 min7 i7 L$ z- @! [
take down R_mA7 T" @% K$ M6 c. m s
wait for e 5 min9 r ]6 |) T. _# L* G: d0 A
bring up R_mA" l1 x. M7 S8 N
end
9 d* m. ?3 f4 R, lend
! L3 F$ e6 c% q. y; N6 @ 6 Y5 O+ u5 B% `* O
begin P_mB_down arriving% o/ s' z) a: K$ L, f) D
while 1=1 do
3 [$ ?8 ?: ]* o! V: x6 Y9 t" k8 I2 @ begin. F' ~4 l- w$ a% K9 n
wait for e 170 min
# Z' S3 `: I5 \, w take down R_mB2 a* l5 _- V Y F# Q4 u( r1 h F
wait for e 10 min
$ j4 A$ ^2 _ p% d4 b: u. T0 Q bring up R_mB
+ N# P6 g+ v" F5 c0 t end7 ]1 P, S! ~- F0 e
end
+ o: ]) o0 q y7 O( C( m' q
0 Y }7 l* b0 ^, y; Xbegin P_mC_down arriving) I0 G, [2 C. V1 p# O2 V
while 1=1 do $ M& O2 \2 b" l9 w. _' M
begin
6 b" m6 P* c# v/ U$ \, s wait for e 230 min
# }( a' j3 s& z/ l; I7 `) z take down R_mC4 d* }4 H! T9 K
wait for e 10 min T+ n7 L3 B6 V8 |
bring up R_mC) _. N$ f n8 a/ f N5 G; @
end) }, F8 U/ I; s- X
end
, x. F6 X1 P3 }, \( |
6 }: ?+ Y: c7 \/ H0 r# jbegin P_mA_clean arriving9 I D+ h- v( o2 m& i' f
while 1=1 do$ H" D8 ^0 c, i7 v
begin
4 y6 ?" ^' K3 y+ v& p wait for 90 min, s, l: B# t- X o8 ~8 g9 d0 {; \
take down R_mA! j. m+ t3 M4 w9 T- q3 H4 ^. V
wait for 5 min
; |% x! E# V$ i+ B' m1 ?- g4 A/ m+ B0 a bring up R_mA
* E% K P; i2 R# i& p6 G7 j1 O end
% ?- o( m+ `' Q& Q& y2 Lend4 e e5 A F+ j6 Q1 N" `
" H+ G m! r0 O/ N' { C
begin P_mB_clean arriving
5 A) W- G2 m- Z8 X+ b7 p" z, _ while 1=1 do% b' z* f% C" P1 R
begin! H! N8 {3 r5 |2 D
wait for 90 min: }0 q" N9 p5 j" O# c
take down R_mB
4 i3 P5 j/ _" S3 Y wait for 5 min
C; v6 b3 ~0 R+ T$ g! l bring up R_mB
3 K( k7 t& P! @) T end$ f' ~3 b$ M! F4 x
end
- i- @2 s& O' R# I
0 C& g! U9 [# Q6 tbegin P_mC_clean arriving
' `1 l1 a- j6 v9 `) W8 Z while 1=1 do
; n: z, H0 G b2 ^- ]9 m begin) j7 j1 }2 [* R. j
wait for 90 min
- ~6 ` K: a9 Y! g4 o take down R_mC
3 f1 K( Q+ d9 L( F6 L0 [ wait for 10 min
# j) j6 d5 v5 _3 }5 @ bring up R_mC$ o% d; p3 u5 m% M5 m9 M
end
; P1 z; [, F, F( y' X9 kend
" U# a) x1 j4 d+ d! O----------------------------------------
* |; x/ H8 u7 X9 U. Q6 r 9 t, s m5 }# d& N0 u) u6 N
Exercise 5.9+ L7 B* y2 }0 j E
, M0 Z/ ^. n# d4 x1 {0 V3 b# ~( [* [7 L5 C
Create a new model to simulate the following system:$ S& ~- E5 T2 R q5 |
Loads are created with an interarrival time that is exponentially 0 \6 \# B( ^# H9 V' j8 }. Z7 o
distributed with a mean of 20 minutes. Loads wait in an infinite-7 k1 T) V6 H; L0 [
capacity queue to be processed by one of three single-capacity, & L7 i7 J. v' D) r' z% v
arrayed machines. Each machine has its own single-capacity queue " K/ t/ X" ]7 @2 t
where loads are processed. Waiting loads move into one of the three
3 ]. _* @- s5 yqueues in round-robin order. Each machine has a normally ' }. @' o' A$ \; _$ ~1 W# ]/ m
distributed processing time with a mean of 48 minutes and a standard
/ b( W2 i% F! y' n$ @' M' rdeviation of 5 minutes.4 L! j5 F* b6 u9 G( {
The three machines were purchased at different times and have % n; B/ z0 l' j4 s
different failure rates. The failure and repair times are exponentially
1 l# E! @0 c0 E& P+ m- T- k& y* v4 M6 P- S- Hdistributed with means as shown in the following table: 4 `$ k. E# l& r- u( A7 L M9 j2 Z
Note The solution for this assignment is required to complete
4 H; l/ [! b k. l/ texercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of / }0 [# l$ u1 g0 B; X
your model. 7 C6 ~% @5 |+ P: R* p& h, Y! J
0 n4 e6 }& B! A9 m9 m1 ?MachineMean time to failMean time to repair
' A7 ?3 B; s9 l( WA110 minutes 5 minutes/ a, E+ S6 E# t y2 W: W/ m h* |. n
B 170 minutes 10 minutes2 P( C* d5 ?, ^" u+ }! U1 P
C230 minutes 10 minutes
6 Y, J/ n! B* L# u/ O+ ~, w2 ~3 i; H6 m
The machines also must be cleaned according to the following 3 o* H$ M( S, [( K) ^
schedule. All times are constant: 5 y+ } v$ v# J/ \8 \
3 }9 `( T. m0 i& K% x
MachineTime between cleanings Time to clean9 m5 v2 Q9 c) l1 [8 A
A90 minutes 5 minutes
3 f4 ~$ t) d. UB 90 minutes 5 minutes5 M: e, e }( R; `$ A' N) q& U
C90 minutes 10 minutes
+ h1 z) w6 @- a, E0 x7 J+ n
. h( U7 B* f7 |, PPlace the graphics for the queues and the resources. 3 ?4 O+ D5 _: U+ e" @/ @' K4 N Q' L
Run the simulation for 100 days.9 }$ R' K* l& G' u4 `
Define all failure and cleaning times using logic (rather than resource
$ @8 C& C! m+ Z5 H( `4 v# [cycles). Answer the following questions:
# I4 c# O. f& _. C- J! n6 v7 k5 Ta.What was the average number of loads in the waiting queue?. o; ?4 w2 C* t- @1 r9 x* j
b.What were the current and average number of loads in Space?
; t; f- K, I. b3 \7 [8 oHow do you explain these values? . n5 A) B: l+ }$ V
|