本帖最后由 GJM 于 2009-12-5 21:43 编辑 : F( i0 M, m% K( t* O4 J; f& C
5 S/ X) y& U- G- b* l P7 a& x
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去2 W0 m# b$ ]5 I
: S) W3 r* a8 f6 b不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!, C* U# S: M: h7 o
+ h2 y& h& f5 b. t" a
--------------------------------------------
9 W; M% o2 ?. z/ a; obegin P_something arriving8 q. o d- i/ c* L/ u& x. @
move into Q_wait- b4 e/ L' j: S& h
move into nextof(Q_mA,Q_mB,Q_mC)0 E8 o {+ X( m* W: O& S
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min: |- v( V' j3 u: [
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
& c4 j3 L8 c3 |3 B4 B/ ] send to die) p: T" P o. m' u- y7 V2 K
end
) a4 Z: Y! m" O4 |0 e8 Y ' W. T( e) ~) p- c
begin P_mA_down arriving
; n" u' V+ S- v7 u) V/ e' p- p while 1=1 do . `1 d) \- k+ G/ m- ~6 h9 m
begin
2 _# s( Z/ ]2 R0 K2 R8 M wait for e 110 min3 Y* Q b1 _1 j2 _% N
take down R_mA
6 f* J% @( A c7 I, s. n wait for e 5 min) I" j% b& Y" @2 p/ H
bring up R_mA# ]; U( [8 O! }9 }- X
end; w- Q* V m# A+ w
end
; d" \8 C* w" b5 I2 P! E! K / m$ r5 e1 o1 Y X
begin P_mB_down arriving
$ E9 _, x) G+ ~2 t5 m while 1=1 do; E& X; M R1 E" R: z, ~2 b
begin9 P; t+ X# Z8 m8 [$ [8 P
wait for e 170 min" j, k3 j% y( _ }6 f
take down R_mB, _7 `) Q: H9 O5 ^' h; j
wait for e 10 min% W6 W; h' y) a# l
bring up R_mB, ?) j" m2 ], t) A& J. {
end5 N% t- t0 V6 y. C" J4 N( G
end9 K; M6 f9 j3 A/ I
& Y ?' N! c v- y6 q
begin P_mC_down arriving
8 q9 d% {7 n$ O9 n while 1=1 do
3 G# w/ E# H1 B' N, W3 w begin
2 d% K/ r, u8 H wait for e 230 min
* l5 _3 s! B+ @) ?8 I' \ take down R_mC
: @4 j: K9 ?8 `( [9 n; v6 ~ wait for e 10 min6 v( t$ Y: J* W E T# z' s
bring up R_mC
: ^2 H" |" b; M. T' b end
8 b$ A0 E) C+ z( x. \, i( uend
) t# i Z- p+ {3 {, W; G / U- `5 v' U# F. ]: g
begin P_mA_clean arriving7 N& W* j. s9 U
while 1=1 do6 X* P! ?# ~$ k8 [: q1 D
begin
~- g* a8 U! N+ `6 O wait for 90 min
' [4 y3 ^+ y1 D- c9 u& |, v take down R_mA! \" Y" N- X+ G3 \
wait for 5 min
3 c4 O7 I0 Q x4 k. g+ F bring up R_mA: ^* Q& f6 i3 x1 R a1 K6 u
end
/ c1 e" _7 Y- s. x& ]( c+ a- J4 E& fend y; N4 W- D0 y0 q% g
* J7 @4 b: X) q- B# r7 t2 u9 Kbegin P_mB_clean arriving, E* x ^$ P7 ?0 D
while 1=1 do
+ i J; a! H. @. J+ f2 Q9 `' X& X begin5 b3 C3 p/ p- l. C& M9 o
wait for 90 min
. ^8 k: \7 h% B: p* ^ take down R_mB
6 T/ \6 }- j2 V5 ~1 R wait for 5 min) G& h; y7 \8 P9 { P' j
bring up R_mB
4 K* |: _0 X( q# V6 u# ^6 ?; K end: v9 ], w4 Q8 L1 M
end9 D( t) {3 H3 H- N8 V
) c$ B4 h% u8 _% ]
begin P_mC_clean arriving7 M; H# d3 t. V0 ~/ K+ ^. B
while 1=1 do3 S) `4 o% P, e* f. j5 S% T" o. p
begin: a g/ Q% W0 a. y" h7 W8 S
wait for 90 min
/ u) J9 I! k7 e0 }# u take down R_mC& [, I, L$ M s" E9 G
wait for 10 min, k1 W( r+ i" Z. D' k& @" E. Y
bring up R_mC
1 Y: o4 f7 [; T% O) p end. k( B; k0 ^7 Q$ M
end
% d. }2 T- c( u; W# ^3 P" ?----------------------------------------9 m2 i0 w; `3 U0 s
! b+ `) s/ I' m3 ]) b) I; p
Exercise 5.9
% M6 p+ P0 w ]! S9 C/ b
' I4 F& M9 D: L2 W; r! G$ X% r5 Q) Q
6 v! C6 S' O) @6 HCreate a new model to simulate the following system:/ h G9 D1 n! ]" H5 P+ {9 c1 I
Loads are created with an interarrival time that is exponentially 1 z& r6 D ?! A
distributed with a mean of 20 minutes. Loads wait in an infinite-# o: m; o; ~: u$ |, |
capacity queue to be processed by one of three single-capacity, ( k8 R9 D, ]7 x+ w
arrayed machines. Each machine has its own single-capacity queue
$ m9 y/ h6 N# x3 w1 b" Ewhere loads are processed. Waiting loads move into one of the three 6 D! I: b/ g) F# U; O6 h7 I
queues in round-robin order. Each machine has a normally
* r& d( N4 N9 B7 rdistributed processing time with a mean of 48 minutes and a standard 9 o4 n; z4 p4 p0 Y! C- u
deviation of 5 minutes., q1 A4 a6 { |7 f3 } m, S. p# `; K
The three machines were purchased at different times and have 5 o' x& |" h0 b* [; [0 a
different failure rates. The failure and repair times are exponentially
4 o% R8 K( S+ Edistributed with means as shown in the following table:
# V8 R$ H6 i) |5 z9 Z l+ TNote The solution for this assignment is required to complete
! G( D' U- W! e1 o/ lexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
" m _, P' R& Dyour model. / B. J$ V& v- }( K {0 v1 I$ h5 @' f
3 p7 ?8 A" f- K$ ]6 k7 Q+ @MachineMean time to failMean time to repair
; ^; b9 E9 k+ Q* CA110 minutes 5 minutes0 {# d6 ^' {1 y* U
B 170 minutes 10 minutes& h" c. {9 P. b4 ^- m5 A' Y
C230 minutes 10 minutes
! m& b+ m, j" K' d& N# I3 J" g) Z6 s. \) j8 S" Y
The machines also must be cleaned according to the following
) p: i& z0 X! M3 R# T0 Y4 L4 gschedule. All times are constant:
$ o& M: o% b; b5 t* R5 \- F$ _' n
& g( @$ x, w- A! I6 V6 tMachineTime between cleanings Time to clean
! r3 Z% W3 ^: M& U, }A90 minutes 5 minutes
. U1 ^' q( P; u) _ F: }* W4 JB 90 minutes 5 minutes8 ~/ k/ R% F3 i: d
C90 minutes 10 minutes
7 u a' O! d" a! E |- u8 v* v
$ m+ w) T/ X) l9 `7 MPlace the graphics for the queues and the resources. 8 P+ u8 `! A& E9 x- c
Run the simulation for 100 days.* E# D3 x# N3 J9 ~) T1 b
Define all failure and cleaning times using logic (rather than resource 0 C. t4 P0 f2 I {0 F
cycles). Answer the following questions:& ^' k% g0 ^; h3 p
a.What was the average number of loads in the waiting queue?
}+ t ~- C& C5 k* ab.What were the current and average number of loads in Space?
$ O/ d' T+ f, {' t5 UHow do you explain these values? & m1 p; S8 p2 l; P+ ]8 V; h, ~( G
|