本帖最后由 GJM 于 2009-12-5 21:43 编辑
. f, m2 k9 o0 L/ z: d1 _$ _* K
; V- G/ Q3 C/ ^, ~底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去5 ]* p8 ?7 Y; D- Q7 S1 F: C% H9 t
( \$ i2 k! [4 R3 X+ w/ y( B
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!. K8 q5 _; a& C' R- Y% S
# S$ \. x: I/ J9 h+ m* ^* T--------------------------------------------. j8 e8 N# U. i
begin P_something arriving5 G+ ]& P4 w4 P) \$ B
move into Q_wait3 D( o* I" F! I$ u* H
move into nextof(Q_mA,Q_mB,Q_mC) {" v- g. A4 |3 H* C" o! G
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
, N9 h1 c0 \, G# j. M/ M) o send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)6 h7 s' \" y# k+ i
send to die& h7 I, d U4 ^, V& W
end! {( |# ~2 u/ f1 h6 r5 u
/ d% h; _5 y3 y% m" b: Q abegin P_mA_down arriving: g* a- ~) M# v0 ?
while 1=1 do
3 `- D, m" i! A& o begin. b* P" Z F+ ~" ]' W6 |2 `
wait for e 110 min6 ]" i; |: _& q) I; ~
take down R_mA
3 A' H, ?* y# U% S+ X wait for e 5 min0 ?; A' I; j( }
bring up R_mA1 ~9 w5 Y3 ?; d- G8 e/ o
end
# r1 v. T2 S" ~1 V# Fend v/ U* {* O" K
/ U2 _. R: y" d
begin P_mB_down arriving+ f1 X) z' R% I& W
while 1=1 do
) t* D6 L( N; k J begin6 B' C5 {6 j$ o! i: e
wait for e 170 min6 D( U* F; C9 j Q# u
take down R_mB
( R& x. N- g. `7 Z: i; w% O wait for e 10 min% ]$ k3 V: O+ E) _- L% V+ Y# y
bring up R_mB
' B6 G* i( I5 Y: k end2 ?( l! I% f+ ?+ J8 k5 g M) X
end
6 H6 B( ?( p/ I9 f; c- o - {6 \6 L% x& v. t8 x# m8 D' \
begin P_mC_down arriving
# u, Z, h4 T9 O R/ j: ?8 _ while 1=1 do ) j* y: ?, F B* n+ y; B
begin
3 x8 m9 C/ o+ D wait for e 230 min7 \' Y; @: h8 {8 K- e
take down R_mC
2 Q& p! r3 p3 d1 q4 b. U' Z wait for e 10 min
* L, J# f# e4 h d bring up R_mC8 _2 n, ?3 h/ f2 i
end
; n1 Q1 k9 L jend6 o2 o# h8 A, D d3 O
9 {6 p: }2 V$ h, v8 M" jbegin P_mA_clean arriving
# V8 [0 {2 ?8 o6 b& m( ~ while 1=1 do1 q$ z& E6 f* T( @6 d) }
begin
6 b2 d) m. J/ k+ x1 _2 X: y! n wait for 90 min
( ]- w P I* }0 l( Y take down R_mA
I* [% @. n0 g9 L' D. G8 Q wait for 5 min
/ Q3 L% V" Z' z5 c2 n2 N$ [ bring up R_mA4 c& @/ z* |; Q0 C. }5 ^& O
end0 J& n4 B, ?# A# R( c; i
end
9 C4 ]3 o q1 [$ u* C8 U & J0 f" [) q# c! z$ ~
begin P_mB_clean arriving3 B, E. Y* C1 E: a4 g" d
while 1=1 do1 p7 O' b* C* O- L
begin
, i: M3 i$ o' u# e4 G5 X( k# [0 n wait for 90 min! d( \. a6 P5 d& G7 m
take down R_mB$ _ F; \- {3 O3 U
wait for 5 min1 G- d( u% V- Q
bring up R_mB" I. D' e, H1 {
end
$ E+ ]1 x2 N" P8 ~/ cend
+ v; c, f: E, r " f& d: g- |& ^6 } D, T3 n
begin P_mC_clean arriving
- S W' t: J( P while 1=1 do I* l/ i( m/ J/ E
begin
- m8 o; O. g; F9 ? wait for 90 min
8 Z6 f' i/ S& A1 \/ G5 c1 x- T take down R_mC
4 T; B5 h2 n! p; W% [4 ` wait for 10 min& e% T4 Q" A; }/ i W
bring up R_mC
) u+ p* r& R. Q; Y8 C end
% Y8 z' ?: X/ `! x: |; l6 tend
4 A6 e5 e/ ^/ R1 x& n0 T5 p----------------------------------------* ]: U4 ~% O8 u. U8 Y, e
3 @3 a) m6 ^9 l3 J( ^# BExercise 5.9
3 _) o3 j# ^% `2 }
( Q& k! `* N( [, T4 o
: b ?. o3 A! F5 DCreate a new model to simulate the following system:
7 U0 F1 c1 l& o3 O( ~. q5 B0 N. ^Loads are created with an interarrival time that is exponentially 4 [& p: @; H, Y3 s
distributed with a mean of 20 minutes. Loads wait in an infinite-
6 c$ g$ y8 L. J9 U; K2 ?( zcapacity queue to be processed by one of three single-capacity, 8 V! I2 T/ @. H. X1 i
arrayed machines. Each machine has its own single-capacity queue
& o: F+ O' s& s/ O8 s# `/ E# G0 Awhere loads are processed. Waiting loads move into one of the three $ r) ?3 S/ o$ j* A8 @3 a" Z2 e& f
queues in round-robin order. Each machine has a normally
* x$ G' I$ ]; P% w3 mdistributed processing time with a mean of 48 minutes and a standard
9 V R9 T1 U$ N' C# Y+ c+ Fdeviation of 5 minutes. b4 g/ q# |4 C
The three machines were purchased at different times and have % b1 C5 C2 d( ^0 ~4 C
different failure rates. The failure and repair times are exponentially
& R r% [7 y4 q- f, T9 Udistributed with means as shown in the following table: 9 s4 M! b& g' m$ `
Note The solution for this assignment is required to complete
5 Q! S( R9 R! ^! Pexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of . ?3 g, V9 M" q
your model.
7 i( B* n/ a) @* y3 y3 l6 w6 f. ]# {% P: T+ N2 K) ]
MachineMean time to failMean time to repair3 k4 N6 y' j4 Q7 P
A110 minutes 5 minutes" b* W+ c: {! A4 C
B 170 minutes 10 minutes
% Z& p+ _9 C' M dC230 minutes 10 minutes
# }) d R; {2 @7 f, f+ @0 n7 g! ~2 V! v9 n y$ W; ]4 b
The machines also must be cleaned according to the following
) K3 T& C4 Z6 |* J' c/ qschedule. All times are constant: + O/ [. M7 l( D1 S( n. h
3 h9 r$ }( _) D6 _+ XMachineTime between cleanings Time to clean, d* y$ @5 x* Q0 d9 W$ `# q. ^
A90 minutes 5 minutes
# J; R, T c+ b0 j, lB 90 minutes 5 minutes/ ~3 K7 J$ o9 f; `9 f
C90 minutes 10 minutes
2 ]. ~$ S! L3 o6 B6 i2 S- v- {& W" B* S
Place the graphics for the queues and the resources.
, {! g6 g/ u! O* ~! ^5 FRun the simulation for 100 days.1 c; \" L1 S/ f- C! x
Define all failure and cleaning times using logic (rather than resource
, r4 y* k% l- M- i9 mcycles). Answer the following questions:1 ?$ a. p" z' _( [
a.What was the average number of loads in the waiting queue?
& ~! O9 A" |2 Y! L6 E( nb.What were the current and average number of loads in Space?
7 Q9 D# E1 e2 N' A: YHow do you explain these values?
# V+ h6 k* [% b8 [% q |