本帖最后由 GJM 于 2009-12-5 21:43 编辑
. B- U: }# U' [& E. L) W7 q
. L2 Y" U8 n. Y8 H4 \底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去" `3 k7 A8 G2 @& q ]0 M8 Z( Y
4 R( w, N$ f7 Z! I, m; d/ d
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!/ z4 D* Y+ f: g8 a
# b; M! V6 P/ f6 c--------------------------------------------
. K, I; o8 ]& C6 ~/ M! ^begin P_something arriving3 x9 U4 y5 {; O' G7 e
move into Q_wait
9 }' ^. l& H4 e move into nextof(Q_mA,Q_mB,Q_mC)/ |. A/ H( [4 h3 q P# V' n
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
. X+ K6 G; K& W, T6 ]2 d Q. i' n/ { send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)0 e6 C7 _+ @/ G! f: Z
send to die
2 }) Z+ ^) X7 Y+ `; [ g4 L! aend' v7 {4 K' k' a6 K3 H
+ I# @. z T5 Ebegin P_mA_down arriving
7 U- D( ?0 a9 I/ E; n, C* p while 1=1 do ) X! O# v1 x7 |: I: d
begin
3 U/ u7 w8 M0 |: R w7 D3 _6 w! K wait for e 110 min3 U, f8 ^8 ~1 n
take down R_mA
0 b' u1 V! x/ M wait for e 5 min1 l. N$ M! b6 K# b" N1 r1 }
bring up R_mA
) c; v. T! ~: [8 ^; @/ v end
# R: X2 L/ r3 J4 Y6 S6 H' Q; V% Iend
9 P( l7 A, C7 Y& z; V b2 f & f3 ]# M5 ~6 [* h* ~
begin P_mB_down arriving; a1 f/ y- s% k! {. F+ e+ ^
while 1=1 do
# u4 U a" h( d! r5 H5 N" r begin% v% I+ h9 \# ?% a
wait for e 170 min
. A1 B9 v/ Y0 C) C* o( ^- e) L take down R_mB
# C# m+ w# T6 o) l& b wait for e 10 min7 W9 `+ \+ ?5 m$ s* F
bring up R_mB
% t& ~* R( A7 w/ N+ d5 i* j9 a8 R end
9 Q+ q* l7 \0 l) ^end
3 _$ [: [5 \' P1 O : @% P% ?/ x% F& H7 y
begin P_mC_down arriving
& o' X: A r3 O5 S% D. i/ I* H/ W2 { while 1=1 do + U1 ?4 h/ { D
begin5 [; G9 d6 D7 h! [5 ]
wait for e 230 min% b$ t A- X1 u' I
take down R_mC$ w5 ]$ A, u! \5 Z& b
wait for e 10 min& ?! z3 k% A$ u7 b
bring up R_mC
2 P3 ?3 K9 ]/ t# Y8 o! H end
7 u2 }$ b1 ~% q- c6 c" U5 p, }0 X% Mend
: t% j) ~" Y3 h; S 9 N& S% l7 h. I: S9 a8 `
begin P_mA_clean arriving! Q6 }, s7 R; T, ~( y) z6 t
while 1=1 do7 j! O2 ]! e8 M/ I7 Z
begin* C6 H+ X- I6 J& I; B# O* \
wait for 90 min ^# P& l2 T( h/ p* t
take down R_mA8 U2 e' v5 S9 v( k; l
wait for 5 min
d; W5 @( @" l, f9 ]; ? bring up R_mA
& q* M" T5 s* R3 T3 A+ y) l( _9 o+ \ end
$ F6 H% b% f- Y2 ?& zend$ \9 t) u& T( h8 K
' e# J3 m0 D, ~begin P_mB_clean arriving
" [- f3 m+ Z* e) }9 o' X while 1=1 do! @. k e' \/ C
begin/ b( U* ?+ S, W. S F
wait for 90 min- A7 J* {3 n/ e. C2 G) |
take down R_mB
- S; A9 x" Q8 \, E/ X wait for 5 min+ \- l. t+ P; S2 a
bring up R_mB
! K3 o* n1 Z9 W3 p% e& \; r: W$ |; i end6 n6 x6 L; L4 R7 _$ f1 j
end
: x: N; g( D5 ^( c# u6 e+ _
/ E$ c7 I7 I' Z' dbegin P_mC_clean arriving$ F# n1 k) `2 k( _: w
while 1=1 do9 t) M0 {1 i3 ?* |8 {7 \
begin
& g9 N4 c$ o5 E wait for 90 min3 e4 d/ J5 _' |0 |) F- f: L
take down R_mC
. R1 N& C( |7 x% ` wait for 10 min3 E9 R5 F" H, |% a% D5 ?
bring up R_mC
o! ~" W4 m8 T8 s. x end; s+ R6 q/ [4 h/ c( q9 H0 z1 C' W
end; I0 q) N1 f! q
----------------------------------------
: g) w A5 A. g . O' p; l# A8 z' S- N* |' `& F
Exercise 5.9
0 Y: p+ C6 ]" k9 Q, ~6 D( d( a; X
4 `( r. U" j E& Y l+ }3 Q; N9 l
Create a new model to simulate the following system:
. A% c5 G. {1 t/ `7 jLoads are created with an interarrival time that is exponentially / z1 k7 e) A7 Q; `
distributed with a mean of 20 minutes. Loads wait in an infinite-
" u3 x# x( g7 }$ r) i* a/ w* N6 {capacity queue to be processed by one of three single-capacity,
/ D. \7 q4 ^3 v3 \: z) N ?arrayed machines. Each machine has its own single-capacity queue
# d' j, T9 X5 z3 |' Vwhere loads are processed. Waiting loads move into one of the three
5 h: j5 Y. m4 wqueues in round-robin order. Each machine has a normally 0 q0 Y" V4 z8 v6 i% V! H1 ^
distributed processing time with a mean of 48 minutes and a standard 1 t# P) O$ m% T2 W; |
deviation of 5 minutes.2 b/ r( c% g, L( ~* C; c
The three machines were purchased at different times and have
. A* p2 ], j* C& r, ^* t$ wdifferent failure rates. The failure and repair times are exponentially
0 N# G+ a7 y7 H( F- E# |- [8 m% Odistributed with means as shown in the following table:
# K$ q q/ q$ l) U" K3 INote The solution for this assignment is required to complete
( V, j' |' _; q2 ?exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ; {, _% e8 T$ h5 W, ^
your model. 6 z+ A5 p# c) |& v5 ]
7 F6 ?. T$ Q7 B) {
MachineMean time to failMean time to repair$ o! v" |3 v% n3 b4 M9 O
A110 minutes 5 minutes: P( g2 V( f* d# M
B 170 minutes 10 minutes M5 e; c4 W- o( j b T
C230 minutes 10 minutes- G# L5 K4 {* n H- D. K
& L: H2 j& L1 b- V ^/ mThe machines also must be cleaned according to the following ) o% G" j" |+ j% M$ i( _2 y
schedule. All times are constant:
0 F w8 r7 U1 {* f. |* Z
- ?0 v& _% b6 W) Q t$ N( G4 C6 MMachineTime between cleanings Time to clean; \/ P/ N! V: L% j
A90 minutes 5 minutes4 x3 ?& y( N# I! @1 w5 ]
B 90 minutes 5 minutes- p5 p3 D2 z# q) T; M1 j; Q
C90 minutes 10 minutes; b' z& }- w, P& v( X9 i
7 x; n; U0 X$ I% y9 p
Place the graphics for the queues and the resources.
8 `- D6 I0 W, dRun the simulation for 100 days., e' B1 X q& N5 v3 H
Define all failure and cleaning times using logic (rather than resource - A7 F7 n# B1 D3 H
cycles). Answer the following questions:, C# B* v1 h- T/ `
a.What was the average number of loads in the waiting queue?. s# \+ @, \$ p1 Y# f* e
b.What were the current and average number of loads in Space? 7 B9 b( V# L1 w# ^+ u5 h
How do you explain these values?
) \1 i; L1 K$ |1 S6 ~$ ? |