本帖最后由 GJM 于 2009-12-5 21:43 编辑
% w9 E& u& M6 _6 L, q; j
1 A, d0 x: X" Y4 Z底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
/ k+ V5 I' l& l. k* P! v* Q
$ [- X' y& w% D5 O不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
3 X, {( H; C$ B7 b( l0 O
7 ^0 A, {& ~7 Q--------------------------------------------+ P$ {. D% T6 S- e
begin P_something arriving
: T9 r1 U4 X n$ R1 @9 a move into Q_wait9 }4 r; A7 _* G4 p- t" W
move into nextof(Q_mA,Q_mB,Q_mC)
1 H4 y+ h' n# c4 A use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
% m3 H( [3 w8 ^+ | ]: Y! g3 p send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
' p R! U! R: ~ send to die5 L0 t O- c) u4 F
end' `, _! i/ x0 ~6 }. O0 E8 ~! q
: J, c/ F! g0 E) Q/ K7 [
begin P_mA_down arriving3 f, M. ~+ `( s l
while 1=1 do
2 d2 `+ }( M5 [( d5 ?& h! t( A8 Z begin1 u* r" W& C* G
wait for e 110 min
2 r) d$ y* E+ S# c( W' {7 P/ T) x take down R_mA
# H; E! @6 @/ E) [( X1 s wait for e 5 min( l' B# }: }# }$ h4 f" C
bring up R_mA
) P8 D0 m2 `7 @" i) | N end& B( n F' p0 | t9 i
end
) S# @1 {* ~3 u6 m
t: M% {, |. z9 h, [. z: ubegin P_mB_down arriving
/ S$ i+ J% F' o0 D while 1=1 do" ]8 {4 s' v( j' u+ C
begin+ h6 P( T Q* r
wait for e 170 min
L {( R' h. I6 q; U8 c0 r take down R_mB
+ Y4 a$ H3 R9 C; Y, \ wait for e 10 min" n; |( K( V/ y4 l4 K8 c% Q
bring up R_mB- y$ v& X$ @8 A1 ?
end
3 ?6 g$ E0 x0 o! L# i5 a6 Cend. _, ~* l2 l# F
$ ^4 U: h* s" D; Z3 I
begin P_mC_down arriving1 g7 A# \) m2 w" m+ Z5 f; y
while 1=1 do # S( h2 h, b- J0 ?1 w4 e, X/ M
begin
1 q3 C6 r" D% j9 h( N wait for e 230 min3 O" q* q8 c+ H3 ~
take down R_mC
/ X& q1 c/ Y+ [$ [& Z: b+ B wait for e 10 min9 }; ^% D& d6 E* d' @2 H
bring up R_mC
. L2 C# ~' A3 r7 ? end. j4 X' e# H7 n+ O
end0 k+ ~1 ?. w8 j
7 e# _- d- C; ?; e S
begin P_mA_clean arriving
0 n& L% Q- Y& C while 1=1 do
. A' T1 l W5 o7 _) A" O8 i begin
: Y+ M0 _% ^( ]/ `0 X3 Z wait for 90 min
( K/ [) z7 ~6 q3 U" k take down R_mA/ T% m U6 ~3 ^
wait for 5 min+ |: ^1 M" o& W" x8 l& I( r
bring up R_mA
9 ~1 {% P& S' @; s5 t f end
9 D# l2 q8 a- Y7 ?end
$ C; n. A, f* {) \; }! c 3 t2 k9 M; Y+ V
begin P_mB_clean arriving
; r: U7 t& n" J while 1=1 do
; M+ G- A9 ?# R2 {5 j begin
% s5 A' t* R4 K& r2 C# ?, H4 G wait for 90 min
2 M1 d; m# Q+ V0 Y( U2 C' D3 R4 h take down R_mB6 R4 N5 w) A0 i" e d( e" a J
wait for 5 min
7 ~7 T6 I% { l& u bring up R_mB b+ ]( |! M, M
end+ ]7 P5 N5 b8 l8 H
end: }- c* Y: A$ p, z; t8 n
# O i3 d/ g( a1 N2 hbegin P_mC_clean arriving
; I0 J! b& r. Y8 v while 1=1 do
3 n5 C3 B# G, \$ K& Z begin; P9 ^& {/ P( e$ ^5 I
wait for 90 min
( y7 ]. C$ o6 a& Y x6 [ take down R_mC' L# _9 S; c* ^; e+ ]
wait for 10 min/ w# w s) l; i |& s
bring up R_mC |$ H$ V9 i2 ^& G) z. t2 r
end
3 e" [: q8 {( t* D; Oend( c# |$ v6 Y- |8 }
----------------------------------------
' Q$ W9 y7 [7 j3 i7 H
3 k: ?; a" p I- }Exercise 5.9
, s; w8 y5 i# u. [
+ ?' Y l: g( {8 {) H2 e& k6 ]# q7 ^- a) g- z0 E0 B
Create a new model to simulate the following system:
# c' s( l( P: M& ~4 FLoads are created with an interarrival time that is exponentially 5 s4 H% W2 I1 K# h6 s! b2 b5 B
distributed with a mean of 20 minutes. Loads wait in an infinite-
6 i" ~2 g% V+ ?8 ]0 J9 o; L2 Xcapacity queue to be processed by one of three single-capacity, 3 f5 D' m* s! Y
arrayed machines. Each machine has its own single-capacity queue
5 |3 [, [: y& x: h' Mwhere loads are processed. Waiting loads move into one of the three 9 j9 K1 w( W8 i! R+ D8 r
queues in round-robin order. Each machine has a normally
9 f+ y) R; c. T5 Y O$ edistributed processing time with a mean of 48 minutes and a standard & N; l# x# Q! c3 x/ N
deviation of 5 minutes.
4 N+ j! |+ a& D) }' [" u! \& vThe three machines were purchased at different times and have
/ Z* n" E; D0 t) Hdifferent failure rates. The failure and repair times are exponentially
6 q' K( ?7 c( H5 edistributed with means as shown in the following table: # s& ]4 F: ~& v5 H! E3 M( I
Note The solution for this assignment is required to complete
8 J: Y1 O, |7 W, i( d9 |exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
3 [" ~0 i& u P( zyour model. - l% H6 j% z- d* C8 W% b- Q
S0 ]+ ~- ]% J6 r3 O
MachineMean time to failMean time to repair; w, |" f- T3 u4 e* j6 v
A110 minutes 5 minutes* b" e9 G! K% g
B 170 minutes 10 minutes4 i1 q2 G# D! S
C230 minutes 10 minutes, m3 r. `7 I X, c
" }* ]7 Y9 _) j& ~6 C0 PThe machines also must be cleaned according to the following
9 H( F% M1 J u: y; P1 m0 m+ fschedule. All times are constant: * z3 T, C& i; p* l1 m p4 F
7 P. p& B8 R& c( xMachineTime between cleanings Time to clean
' w) _8 a( T( b7 j+ zA90 minutes 5 minutes
2 C3 `! ?' u3 [B 90 minutes 5 minutes1 n5 U) F) R6 \( y) b
C90 minutes 10 minutes
/ ~' ]9 A* Q& y' Z# ]: {& V$ M
$ l* @4 b5 x/ z B8 gPlace the graphics for the queues and the resources. / H+ b7 m) ]0 _* ~& W" j# p
Run the simulation for 100 days.* U9 I6 M/ A i+ N% D
Define all failure and cleaning times using logic (rather than resource
% Y4 ~) @, b& C. U# `; i$ `cycles). Answer the following questions:
4 {' [1 D; `1 `9 W7 D2 v1 Ga.What was the average number of loads in the waiting queue?
( m; w% x1 i( j" v9 ]6 P4 Fb.What were the current and average number of loads in Space? + Z: \4 H; s: ~) h' ?
How do you explain these values?
* T* A$ H" f' i0 O& x2 ~" o |