本帖最后由 GJM 于 2009-12-5 21:43 编辑 3 M$ h O2 R0 U
9 r" n1 b( L/ a# I' p% T3 P. n底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
. w- e1 a( n$ {" E$ T' Y% o* n8 p! w+ F
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
8 v# f2 a9 _4 d% a$ i
+ r: o+ i. w1 }0 _8 u--------------------------------------------
6 G- e' t* R+ ]1 U" N5 ^; ]begin P_something arriving
, C7 p y$ e# j7 [ A' [# E7 e move into Q_wait) p7 D* z; N I0 j0 ?8 I/ g+ L& K
move into nextof(Q_mA,Q_mB,Q_mC)2 c5 K6 p9 ]$ h# ^8 N, ]6 \& S" S
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
' ~8 ^2 t5 h+ G) J! h* e9 W send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)# M! o1 D( V& z& p
send to die
( l: g* [ ?: S) \) B* G1 ~end
1 h: U! q% j% o! k& n
6 R2 R! ?$ r+ Y% p$ i$ g* Xbegin P_mA_down arriving- J+ u6 `1 N M% N
while 1=1 do
* B6 O% z ]. ]& k) Z0 U begin0 n1 f0 @* g% { e. S
wait for e 110 min9 r" A2 M# r' ?6 y
take down R_mA9 T5 L, G# G l8 o
wait for e 5 min
! A; _( O. O' N+ a% t bring up R_mA) o' ^: E; Y% m8 c }! p8 Q) R6 c
end
* w* \! ~% l9 ?3 Cend
3 Q1 X" G: X- j+ Q6 P6 X8 y 8 s! _5 y, c# J, _
begin P_mB_down arriving
+ {6 l6 }" T3 H; f while 1=1 do4 h( r- Q" H* {8 |
begin
6 ?9 C/ F2 d3 U6 `0 @ wait for e 170 min
( }1 T; ?4 ]% M take down R_mB
5 G4 J* O* B; n) R- y wait for e 10 min
# ~ ~7 [7 k: b; {3 R bring up R_mB$ V. k- w9 V# b2 ]
end
$ X+ @+ i* f+ {, mend
1 H8 [% B# ?; V* @& E' M6 S( {
( V0 }3 S! t" dbegin P_mC_down arriving
4 B, ]& Q7 t* X8 G while 1=1 do - c; P. w; b' b6 L) u4 U# s5 G' O. c
begin
, g+ J( d4 c/ Q7 ~4 c wait for e 230 min% a' q4 T& z+ C# ]: V. [
take down R_mC: I3 O$ F+ ]. W& } i
wait for e 10 min; S/ ], J6 D, F, h/ F* M6 V
bring up R_mC
9 K f5 [) o7 D end
) }% X, X+ d* p6 V9 aend
- T* Y* Y5 J( \
, S6 n3 \; r7 dbegin P_mA_clean arriving
0 \ q6 r6 V3 ]" \ H* R# s1 e/ C, d* U while 1=1 do- X/ B6 X0 U1 J$ b, u( w$ h; q6 O
begin6 C' [" z" V4 g9 O
wait for 90 min: a' P( {: Y4 u4 ~
take down R_mA
* X' ~7 {, W. h. R, d$ v |; R( Q wait for 5 min
! ?! c: R3 K& ] bring up R_mA
# C; C1 l( I! p7 d6 z end
3 _6 Z( {5 \ L" H, Iend" w+ q& X" R0 }1 m0 d
- Z s8 _# @" [$ B, q3 J# k
begin P_mB_clean arriving
9 N4 _( l- d/ \1 L while 1=1 do
! N3 @9 b7 o. h- \$ H# { begin6 i) O9 P' a9 x2 m
wait for 90 min
9 Z& f! C( l' E0 }0 }: e- R take down R_mB" A5 x7 r [# i/ E5 I% e1 s1 c
wait for 5 min
2 e" v7 p# p, y3 u bring up R_mB2 N) p$ }. ^& Y' `0 |" J: n
end' L k( E. ?. [+ p9 ?
end
r0 x. O; W5 }; w: i2 @: E 5 S5 n- N1 O" V z" Z8 n
begin P_mC_clean arriving
. w- T5 \ `2 F8 D. t5 S- h while 1=1 do
) I- M5 H' F' ~5 o begin
: I+ c* @! M1 Q2 v7 Q wait for 90 min
" J& j9 q3 K# s+ R: w2 Q take down R_mC
% h+ t2 E. c6 Y- e" e4 |- X9 _) p wait for 10 min0 {* ?$ Q! Z6 ^2 M. f
bring up R_mC* U" y) ]& ^1 e7 s1 G
end
7 w8 x* r- e8 g Uend
* n2 }! r. w( n, ^: Y- L----------------------------------------$ F& B5 |* B8 G4 q3 s4 W
# z5 N' z, J1 c3 GExercise 5.9
* n6 X& v5 v& G7 g$ w' J. T# c; u1 z! c
& y2 _; z% C( S) N4 Y. O
Create a new model to simulate the following system:
4 E5 X9 \! U) lLoads are created with an interarrival time that is exponentially
4 |8 s) F. @' C% ^distributed with a mean of 20 minutes. Loads wait in an infinite-0 P; Z8 x" X" ~$ A9 o$ T
capacity queue to be processed by one of three single-capacity, - Z& ?& `0 E9 p* o5 m1 z2 F
arrayed machines. Each machine has its own single-capacity queue
1 Z: _# N% W& _& [where loads are processed. Waiting loads move into one of the three
# _ _2 v0 B3 Y$ M8 i3 Nqueues in round-robin order. Each machine has a normally
' h, u$ v# O+ T/ Zdistributed processing time with a mean of 48 minutes and a standard 0 t" z; M( ?. w. X8 C: C" M
deviation of 5 minutes.- t/ q5 i, f$ z" Q7 o& N0 P5 D
The three machines were purchased at different times and have
$ m) l, G. x$ V9 r: `6 hdifferent failure rates. The failure and repair times are exponentially
% N7 u) t* G9 M" F) L, e9 Mdistributed with means as shown in the following table:
- [- }/ a7 j% J- RNote The solution for this assignment is required to complete 1 y# }% x1 f7 i: r! W7 J/ e
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of $ B3 I& L3 q' Q# `7 W
your model. : }9 w' \3 |7 S6 x7 Y ^9 U" Y0 s# {/ K
9 h/ j) ~' b z% \ ?$ ]4 V
MachineMean time to failMean time to repair
# q/ w$ m6 T! bA110 minutes 5 minutes
# g! h' o1 [, H: J' y* A; T3 U1 kB 170 minutes 10 minutes
0 Y: h' E7 w# F8 sC230 minutes 10 minutes- B- _$ D7 R; I2 w8 Z
# k+ {0 g" g0 n, W0 \The machines also must be cleaned according to the following 4 A4 z. n* y* m S$ ?/ G
schedule. All times are constant:
( F$ P, L, l6 c! p
/ s. H" P5 y* HMachineTime between cleanings Time to clean/ ?/ y+ [) d+ {
A90 minutes 5 minutes
* t6 E7 E9 ^( mB 90 minutes 5 minutes3 w0 ]# o k' j4 Z; u
C90 minutes 10 minutes2 U0 g. `/ Z* }9 W: w G& P
0 G; l1 H4 c; U+ j( N; gPlace the graphics for the queues and the resources. ( V1 \0 m" o! a2 k& o
Run the simulation for 100 days.
7 F* l+ j4 E2 l' G4 WDefine all failure and cleaning times using logic (rather than resource
1 w' e0 x, C& c. i8 ~& H9 b; Acycles). Answer the following questions:+ F* D, |) C8 h: |" `
a.What was the average number of loads in the waiting queue?
) ~/ m; [ M- mb.What were the current and average number of loads in Space?
" i4 ~( K; D3 \+ `How do you explain these values? B5 [: e9 x5 p% d/ L8 @; t. F/ B
|