本帖最后由 GJM 于 2009-12-5 21:43 编辑 6 x% G" b; @& N0 `9 k/ H
' t9 Z e3 q0 ~" \' g$ K
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
$ a, F) I3 O7 w1 D3 X' r# Z+ _/ ]) U. K+ M
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
. A1 B& k( z% ?4 L+ @4 [* J: Q
! k& w" ~, Z- m$ \. K! d--------------------------------------------3 p; _/ U" U! C1 U
begin P_something arriving
+ L% f% `6 z( B/ q" P8 C! @ move into Q_wait. H! F, E1 ?+ ?7 q* v/ y
move into nextof(Q_mA,Q_mB,Q_mC)5 W9 i: [: i* @1 k O
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min4 M( w0 @3 t6 R4 z( _+ I0 N+ F6 y
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
" D0 P9 A( [5 l send to die
1 }2 w4 B; |7 E3 iend# E0 [1 P; N0 a; Q# s) K; F
6 y6 h9 `$ Z" e- F: ^4 {! o
begin P_mA_down arriving
$ w! V+ {8 i5 Z while 1=1 do
8 v4 \3 ~- u$ m2 p* V, ~ begin9 n5 f& V& N T- x9 o
wait for e 110 min* `" t# A9 _3 V
take down R_mA
/ H2 a4 ~/ y& o9 D wait for e 5 min, Z& z5 Y' y5 w8 t$ k3 L, j/ b1 Q
bring up R_mA
' f6 v& r0 S' n7 J0 Q end
4 @; E! ?2 u+ h( I1 [1 Xend
, h `# l# q% _# c$ N- q" y. Z
4 ~* k& a& {3 b, j7 vbegin P_mB_down arriving% X- ], k5 c# G! v; c) N5 c
while 1=1 do# p& U1 [ ?, D$ p# [1 t) M6 k4 F' Z
begin
# |8 v* Z5 i3 V0 X wait for e 170 min3 J2 _" t7 k9 d' Q0 T, f8 p
take down R_mB
/ _# v" p: l: I7 v# O wait for e 10 min
2 U2 ?+ [% v$ H, q bring up R_mB
% H* u9 U/ s- [: x: a9 @9 j" x end! T! d4 q) r U) z. L( M
end
/ i. N! Q! Q) e/ O* G+ a/ J 6 f- t5 z4 \# k& c
begin P_mC_down arriving/ D1 n6 \6 ^( M+ K2 |# j5 w
while 1=1 do - |' J) ]! Z( U% R- ?
begin. v9 c1 t3 F$ H3 W# L' }# s
wait for e 230 min; N. D. n8 `6 K
take down R_mC" u8 s' _: a' A& j# ~/ b' B
wait for e 10 min
3 E) \, [7 Z8 ~: g S/ E bring up R_mC
+ @4 v* p- K5 m( I6 y end
2 c6 y( `+ p1 k3 |' H: g9 ?end
. x. x' m0 e. q6 \. m- E/ Y
" _" \* h' b0 g) ^" {" [begin P_mA_clean arriving4 l/ ^# X" O* F3 q8 e3 L3 N
while 1=1 do) A5 i8 g) g& \! H" \! F# b
begin; W& v7 \; [8 e8 K0 h2 S
wait for 90 min
# _* R E+ o+ Y% l4 d9 a' o( V) N take down R_mA
: v6 J- c$ B0 F2 g0 U& Y7 {2 l! U1 p wait for 5 min; p: s' L1 V& t: e8 B
bring up R_mA- t9 m6 {' s( t) [4 O# |: G2 _* m
end
1 K1 J5 J+ w4 m% ` J/ e% fend( N( T1 V. Z5 i( ^8 k) N
/ P S3 `5 F/ Z* _2 `
begin P_mB_clean arriving
' k! y3 Z- C: n1 ~9 a" p while 1=1 do: e9 B7 {* Z" }# k m; ?
begin+ k$ {8 I. r& J! `; W+ ~
wait for 90 min: d4 i4 u9 D8 {5 `2 ~! |
take down R_mB. u9 p% m4 l4 t/ [& h0 l8 _
wait for 5 min
6 l) N8 L! P' c0 S- w bring up R_mB
! s2 X3 ^& C3 p* w3 M0 [ end0 L) }# ]6 D# a
end
8 @( e8 _: p: n0 N. b
8 p" y: r$ }3 N& S- X @' @begin P_mC_clean arriving4 N" _4 d4 t9 c, V" X
while 1=1 do
2 |; t9 \4 o& R8 X2 V begin$ W% ?* @/ u3 L+ N S
wait for 90 min8 z; E9 m+ @( _% T
take down R_mC
9 N7 q G2 q4 B wait for 10 min l1 t# \8 y. K' [
bring up R_mC- ^, H- r* |1 H) {' I+ ]
end
* c( r2 I% Q% d+ G) ~) Kend
5 j8 v3 G( g5 P+ T/ j+ S----------------------------------------
+ ?- Y6 o/ k; m; R4 ~) A
# x" [" Q+ U; k2 |+ vExercise 5.98 x ?$ z# f1 p6 p: V7 Z; k+ Q* ^
0 C1 c$ P2 W& X4 K0 A E/ x9 E
4 N: f; F6 R: h7 u- t& DCreate a new model to simulate the following system:2 B' @3 O9 C8 F# J H/ B
Loads are created with an interarrival time that is exponentially 5 e0 Z' R1 u m/ p! [! A& o$ o; p
distributed with a mean of 20 minutes. Loads wait in an infinite-' J1 J4 B" d/ q# q
capacity queue to be processed by one of three single-capacity, & O2 U- z0 H$ I4 z5 p- M5 u
arrayed machines. Each machine has its own single-capacity queue
/ |9 ?! [6 b- {3 z, G- ?0 O2 t, e0 Kwhere loads are processed. Waiting loads move into one of the three ! K: U- m" b6 G
queues in round-robin order. Each machine has a normally ( `* p( o0 B+ g" `" b7 ~7 y* M- v
distributed processing time with a mean of 48 minutes and a standard
8 f8 Y" \7 H" xdeviation of 5 minutes.
, j9 P* b: J% Y4 f; LThe three machines were purchased at different times and have ; J& |5 _ h2 H& C5 u. K+ M
different failure rates. The failure and repair times are exponentially * |( J6 _- o5 U& G2 I% ?# G
distributed with means as shown in the following table: 0 Z/ }0 Q: Z- Q* b
Note The solution for this assignment is required to complete + J" |+ s0 ^2 B* s3 g
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of $ h& F5 L9 R& c: t' v! b
your model.
# V; l3 B& M# Z- @' w, }, l! T( z5 B8 y9 u, L1 n! @4 e% V. _9 W
MachineMean time to failMean time to repair% t0 Y+ s- \& i) @# L8 _: e
A110 minutes 5 minutes
* F: |; U( o# e% P: u" mB 170 minutes 10 minutes* o0 U) G2 l/ b4 o7 N$ {7 F
C230 minutes 10 minutes
8 _/ {% n' H. x) |7 W4 z! u, `
+ ~* n8 P; Z" I! |/ N( A( AThe machines also must be cleaned according to the following
" Z7 `5 q. ~# f s6 c" hschedule. All times are constant:
7 {, H2 \ ~8 ~2 U: v+ }) d6 _% j0 ]3 h" O8 \
MachineTime between cleanings Time to clean3 W: d/ \* i$ {/ c' k- G
A90 minutes 5 minutes
/ ?# ~* P+ I( M% \! W2 uB 90 minutes 5 minutes
# }2 p: V' b" x; B r- jC90 minutes 10 minutes
/ X1 Q( Y! |: A+ ?+ m. V# f
) R x9 n6 T# R4 W4 gPlace the graphics for the queues and the resources.
9 P0 U7 K( j7 LRun the simulation for 100 days.& T, [, g$ d8 C x% ]
Define all failure and cleaning times using logic (rather than resource " P9 `8 i7 o B# ]" y* y% J; U1 g7 V
cycles). Answer the following questions:4 r: T" v3 c/ Y" M; U
a.What was the average number of loads in the waiting queue?
6 r2 } ]2 C* e, w/ [b.What were the current and average number of loads in Space?
( [* i+ S5 \# l' r& y: z% d$ KHow do you explain these values? ' @7 m$ N) r9 ~9 |( t( s3 i2 j
|