本帖最后由 GJM 于 2009-12-5 21:43 编辑 8 u1 @* ?1 F7 ^" I- S2 @
) F0 d6 }" t8 i7 y; ?
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
: p# G/ ?* ~9 S5 }4 M- Z" G: |: J8 R+ i/ ?4 ^9 D
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
. e' q3 b% S" y- P5 V# ^) u7 r2 e/ U5 h( j- e4 I7 ~
--------------------------------------------6 x* U9 e5 U% j- b9 v0 P
begin P_something arriving0 n3 x. o( _) R
move into Q_wait
! @9 f* j9 A! M move into nextof(Q_mA,Q_mB,Q_mC)
2 I9 H- I8 {+ A/ o- L( X, Z# d use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min5 D! o" G- s. I4 W; [7 `; i
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)1 p) k) J( N% r5 |6 L
send to die
) R+ b# P: I m1 P ` \7 H5 `9 O9 Rend% f( _' h: ^* }/ Z M4 r5 I
9 A K8 _2 {. c1 ybegin P_mA_down arriving% g3 u0 }/ I* ]) \( O; ~! j# z
while 1=1 do
' r6 Q( ?+ r+ R& @* q# P" r$ N begin
/ u8 a/ Z$ N G wait for e 110 min9 ]5 J% }2 a+ \+ \: R
take down R_mA; }3 X6 h5 c. k" M" ]
wait for e 5 min; | @: w @* [
bring up R_mA
) u& u% Z4 u: ^( p end
4 _6 X5 Q9 {7 e; f; _0 z; d9 ~end9 h3 o9 Y' U [ @! ~$ G8 _8 K
2 v( T2 c. ?6 n S. h
begin P_mB_down arriving
: k( U% W& I+ I6 u* g while 1=1 do
) s4 h4 D2 Z8 B9 B5 V begin7 f" [6 I' C! z# P8 L
wait for e 170 min* G( I, r) B( H9 ~" u# e ^9 R8 h% ^
take down R_mB
5 Y, J# P6 Z1 I5 M( y' h wait for e 10 min
$ N# U, Q# M( s. q bring up R_mB9 c' |3 [& j+ O: d6 @$ H9 {
end L: \ ?; E/ p' F
end7 V( W3 z& v; i& F" d3 `
+ _+ O+ |2 ^( @begin P_mC_down arriving: c% t5 W: p6 w* ^/ _
while 1=1 do y6 t0 m' S0 m9 z$ S+ n8 W; H
begin
( D) q" W- _% N& }. K wait for e 230 min
" M. _0 ?5 i6 T; g% t; h* X take down R_mC
9 `4 w5 i, V$ ^8 y wait for e 10 min% @* d1 p1 E9 N% ]9 a1 g
bring up R_mC/ {/ F b2 g; T4 S6 a
end6 f$ ]5 A+ I& h9 T: x$ u
end
* v$ |# i1 z2 t0 R( [, h% p1 `
& x7 T, }- J4 t* a4 tbegin P_mA_clean arriving
( A1 `$ a. p# L3 B while 1=1 do1 P7 \: W: t: l% p: I) S
begin
* {& B! p( C8 {% S wait for 90 min
+ |5 e5 L$ c3 ]( ^( V4 o take down R_mA8 Y: C+ ?) _3 d6 J
wait for 5 min; X: U0 n) r+ l* d
bring up R_mA- [: [5 Q$ x3 `) A; ?
end
0 J& v# R) p3 R; ]1 wend& N: K( Q: t/ x
; V2 L7 _/ [' H! u7 T# O
begin P_mB_clean arriving) q4 Y Y: x4 U$ X
while 1=1 do; A2 Y# y6 Q4 a' l
begin! J6 A: V. E, w; D
wait for 90 min9 v' [ e; ^ B8 D& H
take down R_mB
! D$ _+ B8 h' i `0 n wait for 5 min" k4 a: u5 z7 a. Z7 T3 _
bring up R_mB. n5 w g& [$ g; F1 W
end
9 ? _/ h$ v- eend
8 V: D a$ p: y2 }6 t ' \- s- W2 c! ~/ ^ ^, ?
begin P_mC_clean arriving D" X2 r3 ?# K' @1 B
while 1=1 do5 M; v! Z" x O
begin- R6 M f1 c" N( r& v" X
wait for 90 min7 o; S2 P6 I+ P3 ~
take down R_mC
: P. g3 h a( K, `2 | wait for 10 min
4 n' N/ {5 l! f+ Z9 B bring up R_mC0 d" q/ K c6 ~1 X
end
6 |3 B G2 H) r- C5 V' o2 X& [end/ L' z: v# i0 h
----------------------------------------
9 A: L, j, X/ r ) C1 i6 N5 s4 m5 {" x: \' t# T, D1 \3 d
Exercise 5.9
/ t" V3 p8 y$ @" ?8 u9 r% N6 o
- j# J9 y/ P1 ]0 n! L/ |& W. q' p
3 B1 [% z) m+ K* ^: qCreate a new model to simulate the following system:
$ b7 N3 j8 @5 h# j+ ?' J5 s5 OLoads are created with an interarrival time that is exponentially " x% O" D1 e( d, `3 U
distributed with a mean of 20 minutes. Loads wait in an infinite-# Z2 c6 Q6 X, Q
capacity queue to be processed by one of three single-capacity, 9 U2 x7 e% A% F: t% U5 i
arrayed machines. Each machine has its own single-capacity queue
1 {# b# d- T% w1 z1 A9 vwhere loads are processed. Waiting loads move into one of the three
j( D; e E) \- {& Qqueues in round-robin order. Each machine has a normally + x3 Q( ]( x1 f8 e* z0 C
distributed processing time with a mean of 48 minutes and a standard " P) d# H0 M; o* F6 N1 R6 {& k) P5 F/ ?3 W
deviation of 5 minutes.' U# z" C" R7 R9 c; g0 H8 L, Y
The three machines were purchased at different times and have 8 Q/ N9 h. j1 O3 h! X6 \" u
different failure rates. The failure and repair times are exponentially ' @* ?7 S1 {* c. n$ L$ o1 p
distributed with means as shown in the following table: & p- l1 `' r- m6 }1 W u
Note The solution for this assignment is required to complete
C: }1 ]: X' }, k, gexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
% ]6 y& N7 {4 }! Dyour model. ' a% u2 g* J1 P' _+ W. U
! O' w |/ q$ |- r+ v1 H z! C" ~MachineMean time to failMean time to repair ?' Q( U; K" u8 J3 N: Y1 E
A110 minutes 5 minutes/ L- j4 k% j3 [" ?6 ], J5 |$ X7 U( k
B 170 minutes 10 minutes7 E$ ]1 s2 L; H- C* o: V) f
C230 minutes 10 minutes% @# S8 G3 Y* c8 e( M
# C6 a; o% \4 ?9 S R& ?The machines also must be cleaned according to the following
, R- Z1 g" D4 g3 [1 J4 r% H. yschedule. All times are constant: * b) T( J6 Z3 j' }6 }! |
. v k! {7 f" p( X7 gMachineTime between cleanings Time to clean
4 X* `# E# ?5 }: p' ^! ]A90 minutes 5 minutes6 f6 z3 d: A6 B, `8 u- w, O
B 90 minutes 5 minutes/ f/ Q( C, D: Y
C90 minutes 10 minutes
. n f# i! K$ h. c5 R" X! l
, X! Q! I1 X! _- C HPlace the graphics for the queues and the resources.
0 v- k4 F% H. g. c8 J3 G+ CRun the simulation for 100 days.
7 m; W' Z1 W# R$ [. E5 wDefine all failure and cleaning times using logic (rather than resource
( _/ w, ~2 y2 X2 o' V; K# [cycles). Answer the following questions:
8 ]# m+ L6 R: S: h% H8 J4 i) D3 G9 Pa.What was the average number of loads in the waiting queue?2 X! ]9 w) p& ^1 g5 C+ M
b.What were the current and average number of loads in Space?
$ q% h) ^# A7 S' `How do you explain these values?
# \0 H. s: c# X4 n4 L7 R |