本帖最后由 GJM 于 2009-12-5 21:43 编辑 3 x/ V$ u1 j' B" Y0 ?' P6 P h
4 `5 d; H3 j* S2 O; U* y
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去3 Z) H" M# g; s- J1 ?6 t
3 ?5 l0 [1 Y5 K3 N
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
& y: v+ Q) `% i- v; q* o' Q
' r/ P. ?+ Q: E3 r--------------------------------------------
) _# N, c6 D) D) gbegin P_something arriving
* f0 L F- H9 W) [8 ]; P% m move into Q_wait
4 l2 L# i+ V# R! \: i- u+ L) J move into nextof(Q_mA,Q_mB,Q_mC)- |# i! q9 W: Q5 N! ]1 L
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min2 V# B( a) c w7 c! O' a
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
/ @8 Z# y( n- S) c4 D# h send to die
/ ~+ i9 _: d* qend
4 i/ V J! T9 ~' z
! l! ]) _. H/ S( T' dbegin P_mA_down arriving
& G- I, @7 f6 {5 a while 1=1 do
0 D$ e" {: M' v% U begin( i# ]/ C8 J' d3 r
wait for e 110 min8 l m6 r6 Q3 W7 v @
take down R_mA; f. N5 g } V+ Z: m
wait for e 5 min
; W5 N( p8 z3 h0 x5 i bring up R_mA
& y2 S8 v3 f, }5 W. {# {1 S end
& ~( ]: n9 X% ^end' k2 }6 X5 h- w( @0 g7 F& I
7 P( {1 V/ ?( S( K7 K# @
begin P_mB_down arriving
& n" U J/ u1 c. o' }& o while 1=1 do
! t% A0 D, `7 t5 ^% g# @$ n begin
8 L$ Z2 \ s# q% O; z wait for e 170 min- F5 ~, K& X! D! U9 L7 D; W
take down R_mB
. K1 `' t/ x1 l1 ~- g wait for e 10 min/ h2 Q; d- u @' i" H; ]
bring up R_mB
4 S: N' L$ O) p: i& {9 d* T2 f end% J3 B2 M& y% N+ Y' p
end
% Q6 G8 r! X8 O ) b- c/ `9 F9 I
begin P_mC_down arriving" E! }8 p/ O( `2 m
while 1=1 do
. M. G/ V/ B' z1 j begin2 V1 X) W& h w- z7 h# A2 W" H
wait for e 230 min& B4 B* ?' y7 N9 a3 _
take down R_mC
4 O3 i8 N7 F% w# m6 H wait for e 10 min
# b' m) n D4 `2 R' P, ] bring up R_mC% m: ]" Q/ _7 T8 ^% \) ?% ]
end; s, U( p5 _3 c0 W1 j/ v0 B1 y' R" O
end
- {0 M' B" }6 s$ N+ M* |2 u3 x 3 `# C+ E. c' ` @2 }
begin P_mA_clean arriving' p F( t5 V$ |/ e. J
while 1=1 do3 `2 d* G$ x: N3 q
begin% l" [* y" J# E. C0 d+ {3 a/ |
wait for 90 min2 U& m: u! v/ _) s5 ?# K7 w' W+ C
take down R_mA( J1 @; U! d) {: ] `! k" P) D" V
wait for 5 min, |) U4 s+ U9 Z
bring up R_mA. k4 {) L3 A+ n. `/ m
end
8 M/ z4 r7 c* P' t- a+ P% \, rend
' ~+ U8 S1 ?" a |0 N$ x! N6 i * i: h2 V6 P5 L" `, O4 L+ ^7 {* J
begin P_mB_clean arriving
! x0 g- S% n, @. O% T2 @ while 1=1 do- D) m/ J* W; n8 F1 |+ f4 a. {
begin( j; z5 ?: E( H, O ~7 C/ Q4 ?
wait for 90 min; i2 [+ M F/ s- |" {2 m! i
take down R_mB$ h0 S! B4 r5 f2 i
wait for 5 min5 a9 q7 u% k' q- O$ `0 M9 p3 C% i
bring up R_mB2 P3 F$ v0 ~0 m+ p. A/ F- Z
end5 [. ~) y2 j! O! u" [! B
end
4 r7 p! j9 f0 I3 c6 K. _ / ]) g. U- r2 U5 Z+ Y! N5 ^
begin P_mC_clean arriving# N& Y9 Z) y% }# P; r
while 1=1 do
$ O) m: w {" E0 { begin
* B" L: s7 t9 O6 V% k* o wait for 90 min
+ z& R( z, Y5 O% U' b take down R_mC! [1 |. c+ U+ A3 F& u j
wait for 10 min
4 A6 E0 e$ ?, V6 U0 S$ F( o bring up R_mC
& `# `- o4 e' S" \- N1 ? end
: M4 G! S3 e& Y s' r& h, M6 [9 f5 Eend7 S! { {4 Y' s" m
----------------------------------------
0 V( s4 E' p3 R- a0 r) L" o3 A
9 P$ v* H/ W' S" @$ i4 KExercise 5.9
" k6 o+ L9 J1 c4 g7 I1 f. _
' x$ p( E& q2 T3 t1 U$ ]& F$ v- ^8 B$ G
Create a new model to simulate the following system:; H: Q, m. g+ q5 O" Q9 n
Loads are created with an interarrival time that is exponentially
3 B" {. d W4 _ Y" Wdistributed with a mean of 20 minutes. Loads wait in an infinite-! W2 a p' P! y0 M2 j
capacity queue to be processed by one of three single-capacity,
9 x3 d: h7 j& |arrayed machines. Each machine has its own single-capacity queue % D" B; B" l4 B
where loads are processed. Waiting loads move into one of the three
7 R( Y, r3 W3 l7 Lqueues in round-robin order. Each machine has a normally ' F+ f: H) D. e* h
distributed processing time with a mean of 48 minutes and a standard ; h. b; o, i! R
deviation of 5 minutes.: [& _' }/ L! v! S
The three machines were purchased at different times and have
|. V. W% q) \ \+ Mdifferent failure rates. The failure and repair times are exponentially
, y7 r( q. t) F: y( r6 S" cdistributed with means as shown in the following table:
! F) ]- y: A! I- Q0 {' Z6 s, GNote The solution for this assignment is required to complete
2 _- Z6 }; Z* _$ D% I" E2 Z" A8 F( x4 Uexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of % P& n+ E+ q! g+ t9 U8 l/ G
your model.
$ ~/ A7 ?7 ?6 A& |2 J' N
+ N- j2 y5 D) |' B6 D! \5 AMachineMean time to failMean time to repair
K5 K0 k1 ^) q2 q' C/ B. A: VA110 minutes 5 minutes
' D# r/ @9 q# g4 WB 170 minutes 10 minutes
) H8 x* @0 ?3 I* VC230 minutes 10 minutes8 K1 O2 Q0 U6 Z U. I9 Y
0 U$ u9 p1 t: E8 f$ k# CThe machines also must be cleaned according to the following + N8 \! u- t# |( C n
schedule. All times are constant: 9 y0 X2 \3 n, F; u" L) m! n
+ E3 L! R" {4 P( T% `$ X
MachineTime between cleanings Time to clean! y) M* H( J6 G! |6 c
A90 minutes 5 minutes
% j6 @2 N) K5 Z0 X# VB 90 minutes 5 minutes7 O2 T0 Y5 U# R8 U5 [8 A' @4 ?# l
C90 minutes 10 minutes g2 C+ T3 c+ H
7 N8 t; @8 ^0 `0 V1 oPlace the graphics for the queues and the resources.
- {: u' C r% o" o' C+ E% m: lRun the simulation for 100 days.3 f, B3 a5 Q! X7 ]7 b7 C* I
Define all failure and cleaning times using logic (rather than resource E% c/ y. l" M
cycles). Answer the following questions:# K/ E/ z8 k& ?
a.What was the average number of loads in the waiting queue?7 c! K7 v |% Y Q
b.What were the current and average number of loads in Space?
, n7 F" Q4 {( f" LHow do you explain these values?
, F. d' L6 B4 o I7 U |