本帖最后由 GJM 于 2009-12-5 21:43 编辑
! b$ [- E4 X t- v. @
+ Y! J" a' J4 l4 J. f% O底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
+ _. g4 B* f$ C- V9 a$ j$ v
" ~1 d; F" z# k5 J; V' r0 V不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
# v* E( u/ T, D: {
6 C; ^* j, X" b' [1 B% h7 ^--------------------------------------------
& h, j5 p/ o6 H4 d7 H' }begin P_something arriving7 p( u U% e- j8 N
move into Q_wait% j: A2 w3 F) h1 L5 ~1 ?4 i
move into nextof(Q_mA,Q_mB,Q_mC)
) G& b, \7 K; L! @ use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min- \7 k& J# ?% q4 I& i7 _
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)# @: S8 c8 T8 T, O' K
send to die
& M; v2 D* B. m8 Bend
2 G3 o; o& t; v' G7 K
/ [4 r) e! _6 y8 v2 @2 w* \) \: ]& Rbegin P_mA_down arriving
: W0 R/ y3 P$ E4 ]7 x4 c: B while 1=1 do ' v2 C5 O( X, h' L8 Z: v5 q3 v/ D( C
begin- _8 F `) d( e7 ^ H5 I8 b
wait for e 110 min3 h3 N( n* g2 _( c B2 @" @* l
take down R_mA D+ }" E0 h0 o7 k; r4 C
wait for e 5 min! k( g- \/ q$ k! s
bring up R_mA
0 T+ z9 K z5 U! s! w end3 F) s2 |3 Q& ^' L/ C
end2 `2 R6 z0 x" E- f; K
. w8 S" F% g7 ~* e+ w2 c) w$ \begin P_mB_down arriving. B0 p9 L$ |# m& J o
while 1=1 do
6 |( o) N% ~: m5 G: ^) {% ] begin* Q) ^+ _4 x* r" X
wait for e 170 min
% C- ^1 P p5 k/ J1 V1 ]' s8 w3 A take down R_mB
k: x' m9 [/ A) Q wait for e 10 min0 I, E+ G& v1 v- k& m) s4 k
bring up R_mB
3 e, O1 D* e+ _/ z u& J6 f end
* k+ L5 m. ~/ \; z& x" ~; Q! _$ ?4 tend
( v! o8 h5 j$ W# p$ B7 J% k* L
9 ]; l- U3 y! y8 W; j" {begin P_mC_down arriving9 f5 |) j4 Y. a) F) T8 A% e
while 1=1 do , N0 s0 G* W/ B1 a6 P; ?, z/ t
begin
7 P( \& s' g( J) b wait for e 230 min
9 N* G# N! L8 r; ?2 U take down R_mC
' E1 d) L$ a& g wait for e 10 min
7 ?9 E; P7 q3 P# A" [% y+ q$ N9 Q1 ? bring up R_mC5 Q( f% Q. I% `, R. t' N4 |. V
end
8 j- _% M* w0 B5 T3 ?8 bend9 A( y+ ]0 o5 y( [0 f/ L$ ?
& u, B1 y" T# |$ o3 o, @3 O) h0 ]begin P_mA_clean arriving9 f( r K4 h8 M# L5 q3 a8 P* d
while 1=1 do) Q! X ]/ b: [4 U& h& N
begin
5 g5 \' M* c3 Y wait for 90 min$ ~% Z) H3 Y O- J1 }4 g! M
take down R_mA
3 W* X( s1 y' C% d M$ M+ u wait for 5 min
, f2 Y, T6 L( v bring up R_mA5 w, o' v0 B: ^% U, V$ r. h
end) y/ ]. P9 H# Y$ P2 |& O
end0 y4 P; a( W% {( M" S, ]
/ z8 A- T; K0 ?# H) Ybegin P_mB_clean arriving$ H) D9 i% ?& l/ ~
while 1=1 do
0 m4 F! |( J$ a, Z! S4 I2 y begin0 o, c. C! p3 H7 l4 i7 E
wait for 90 min6 M: n& C1 u5 I% N. q3 L
take down R_mB
. ]8 I @7 B0 H# H( v' Q wait for 5 min
5 E# F j2 {/ P bring up R_mB! @) ?: t, {6 @$ F+ h! i
end
5 _3 J2 w0 F- ^9 Mend
2 ~% U7 i6 {- B: ?
) \4 o: X8 I/ ]4 B6 ^2 Abegin P_mC_clean arriving+ y5 }* [6 i# q+ [7 s0 W
while 1=1 do( B2 ~( d, y8 F( S
begin+ R+ N& t+ @! q" n% v0 w1 N( ?
wait for 90 min
/ f8 ^2 O7 e, s take down R_mC3 w" A# Y a- w/ G2 b
wait for 10 min8 p/ h4 a8 b* Z& I1 B' l
bring up R_mC
9 ?3 T# z3 i; K* L2 z end
! x& \5 z E0 S8 `$ m% @" y6 Send
4 H% G \' `2 h1 o----------------------------------------
O, b, V; Z4 A- Q' Z , A# W8 h: \% K( U- M6 F
Exercise 5.9
7 D. v u/ v3 i S3 c) e
* U: ^) W+ K0 o* C
; W0 z1 o& a/ E+ y) Q5 g! l% iCreate a new model to simulate the following system:0 }2 }/ O; d+ D4 \- F4 f* l
Loads are created with an interarrival time that is exponentially
- _' W2 o1 X9 u1 I0 Udistributed with a mean of 20 minutes. Loads wait in an infinite-
. s3 a5 l; W; c0 k# f# [7 m0 _capacity queue to be processed by one of three single-capacity, 6 n8 W' N, w" x X0 i" f
arrayed machines. Each machine has its own single-capacity queue
7 P" b" b' {5 U+ A) T2 g, W' Ywhere loads are processed. Waiting loads move into one of the three 5 s/ Z6 V* m$ y `; X
queues in round-robin order. Each machine has a normally + O& H* A$ k \& I3 h% I
distributed processing time with a mean of 48 minutes and a standard
/ Z1 n9 Y) i F4 X, f" Ideviation of 5 minutes.
C3 g3 A0 |6 R8 w6 H6 s* gThe three machines were purchased at different times and have & v% M: A. Z* K) v
different failure rates. The failure and repair times are exponentially
}0 D/ g* k. S2 L7 ]% ydistributed with means as shown in the following table:
( d4 x# p3 G; g6 y! ~( ]9 \Note The solution for this assignment is required to complete
H( Y4 u* G! c) a) z- |3 uexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of $ L. u- s I2 ?
your model. 1 ?" L& I% Y( g. j; Y1 p
9 { v+ ^9 L# U. @6 m" A4 }, O
MachineMean time to failMean time to repair
+ X3 E r/ j1 g+ j4 u. ?A110 minutes 5 minutes0 \% `: S) B* l1 B8 ~7 |$ l) e' H
B 170 minutes 10 minutes g- A' h( x: ?0 G K7 s7 p+ T- y
C230 minutes 10 minutes3 x. F7 P" ?/ `: F' @$ H' _" Y
6 q* e5 s* h) DThe machines also must be cleaned according to the following + ]( D( k: m/ Q0 y+ p5 G5 p4 _% X
schedule. All times are constant: : b: Y& ]; m2 ]4 T6 k
' c+ n/ p2 \: E0 E1 ]5 o/ pMachineTime between cleanings Time to clean
4 M1 H; L6 g8 R8 n! N/ M' a, F! jA90 minutes 5 minutes
- I7 Y6 {, ^7 D# t+ YB 90 minutes 5 minutes7 ^6 x1 |3 l% S& I$ c* G4 Z3 M4 a
C90 minutes 10 minutes
$ u: {% j+ D: n- |: }' Z7 W* t& N" w* Q! r3 O4 N% u% }; M+ S
Place the graphics for the queues and the resources. 1 ^: X! C4 H5 @; T" j$ t
Run the simulation for 100 days. ~5 z# [; K, R
Define all failure and cleaning times using logic (rather than resource " t& g2 j7 R: `) y
cycles). Answer the following questions:
, ?% U6 o. L5 c# Y6 j* _# E- `a.What was the average number of loads in the waiting queue?& j! t/ c5 g# D0 C& H3 `9 f' p. N+ [
b.What were the current and average number of loads in Space?
3 L% v M7 L" a8 a" M7 {$ n0 bHow do you explain these values?
8 E& @5 N6 S6 }' s |