本帖最后由 GJM 于 2009-12-5 21:43 编辑 6 F0 b8 L) H8 X0 S. s, o n
, Z( B9 q! s M& [* p* ^底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
2 b% b9 t% F2 V0 C1 H# L
* x1 T/ f' w1 Y5 h) k8 `+ M不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!5 O/ i/ b+ Z0 g/ d; k9 C
8 Y J8 f0 m. u: S/ `, e2 @6 b- M--------------------------------------------
% B' I: i; d& N2 E. h6 nbegin P_something arriving
" x# r2 n' }/ u1 n* T/ Y( w move into Q_wait
0 ~; a X' Q1 R8 ?- q& \6 H move into nextof(Q_mA,Q_mB,Q_mC)
0 L5 K* r6 Q* G1 [6 |( ^ use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min6 K" Z8 e V) [8 L
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)3 t4 E+ @8 K, ~9 `
send to die6 R: c% l. t$ R4 N* g V% j
end5 ]: {1 K9 S0 H$ W, V- I0 y' r4 J* d, b
) c& `$ r" J0 B7 }/ Z: a
begin P_mA_down arriving
6 E/ N: Z, g0 e( \/ R4 U7 B while 1=1 do 0 b6 |7 Q# R8 d/ @
begin. U. |! q5 Q; [, V
wait for e 110 min
9 }2 E( Z W* p8 }. ?2 q# ~; d2 c take down R_mA
) D" o+ J6 P6 `* s wait for e 5 min
5 f) w( T5 t$ _' G3 _ bring up R_mA
! A& G0 O0 D% `( K5 V | end( X3 ^ Y5 H# ~! t& D
end1 f2 J& [3 ]" G+ |
! W1 o* T7 [: K6 N* M. hbegin P_mB_down arriving
4 e& L3 t$ c/ u4 \' F, y+ X q while 1=1 do( b1 r$ ~! h1 J( ~
begin
' W9 J8 ^+ R8 I. B' g( k8 f1 F e6 N" i wait for e 170 min! Z J& a n! s# L5 n2 S" w( {
take down R_mB
+ C8 E; h& F: f/ r9 Y wait for e 10 min$ e+ L- b N4 z n# q
bring up R_mB
& l' \9 O& C5 }* ~% [* R B$ e# g( ^ end
?# N5 k* s, S4 Y+ _4 l8 e: [end
, @: x1 P( y0 P" ~) T 0 g) u, F( A+ p8 K& l; N- m! \+ r
begin P_mC_down arriving
/ N, |( D( [$ Z# V9 c ^! | while 1=1 do
3 M& j1 C0 p6 f8 B begin
% d E+ D8 }/ k/ _: ~5 s wait for e 230 min
$ L' r8 S/ |" T$ V2 S take down R_mC0 \6 I8 J, a. x" ]' S
wait for e 10 min
$ B$ m4 d5 d3 F; m | bring up R_mC* v. R, s/ Y) ?, E4 \
end. X; l8 [5 @$ ^: }
end
# r* q% W) R" B
8 n" u; r/ m: r) ebegin P_mA_clean arriving
) @4 B4 L4 d- X3 d4 U/ a while 1=1 do
4 z" R! m" g+ A2 R# D/ j begin* ]; H, M3 n8 Q( H7 z. P C# \
wait for 90 min
- t( x* ]& }; F k9 q9 ~6 p& \ take down R_mA- ~7 g6 ^9 @1 s# K
wait for 5 min
0 V2 \9 A6 \% t, P8 e bring up R_mA" f' S1 w& Q9 V1 w
end
8 Q6 K& F9 l; b# I- G, Fend
, \3 i, F# X3 @% E6 w 9 n# a& J1 G; b6 y, b" ~
begin P_mB_clean arriving/ |) u! e& B7 w9 Y
while 1=1 do8 Q. B& z3 Q; v
begin
& ^! H" ]7 {1 |5 O wait for 90 min
$ ?$ ~) O1 Q- \ l! c$ W take down R_mB5 A2 P: a3 ^/ l( X0 l
wait for 5 min
0 W+ h, ?# C9 @. C# @- Z# w2 T bring up R_mB
; z5 M0 i4 K: T end% h m4 z" A, ?; O
end, b9 R5 k& ]3 u& W
. D/ G/ b, n* P& ^) p- z8 y
begin P_mC_clean arriving- [0 f8 T/ L# c0 o" ~
while 1=1 do
2 o$ H" V8 B/ H7 e# { begin
' o* V F9 i5 q2 a( [& a* ^$ w wait for 90 min+ E( R4 s/ M. ^
take down R_mC# l3 Y7 t/ s6 a3 B0 _# S, v! T
wait for 10 min% ]3 K7 o# x% o8 m3 y' S( F
bring up R_mC
/ ~2 ^, J6 V% t end3 W* i7 i; V. K$ _$ s3 Y
end+ S3 L- r5 I, U P2 l; g
----------------------------------------# w5 c! w" r: X7 U
6 s, j- N3 }* r& Z. h$ v
Exercise 5.9& u; E* n0 [5 e9 z$ p0 }% r) t) _
/ C* B8 R9 S# W9 e# J6 t6 E$ i. Q4 Q' E- r, F8 {
Create a new model to simulate the following system: O9 J: Z3 l" A, ?# }
Loads are created with an interarrival time that is exponentially 3 {( t S8 B% `7 \2 }( F$ r1 K9 L W
distributed with a mean of 20 minutes. Loads wait in an infinite-! @6 x9 e' x7 N5 t$ a+ a3 h
capacity queue to be processed by one of three single-capacity, " u5 G% x/ x# A" V
arrayed machines. Each machine has its own single-capacity queue
) O; Z8 p$ K. Awhere loads are processed. Waiting loads move into one of the three
9 G$ V% i( ?3 nqueues in round-robin order. Each machine has a normally
* J1 I# x; \4 N5 ?& Ndistributed processing time with a mean of 48 minutes and a standard 5 D4 f# A. q: c, [0 f0 g/ o
deviation of 5 minutes.
# j) J! g9 R3 E% `The three machines were purchased at different times and have
6 s% V# B# Z/ e0 bdifferent failure rates. The failure and repair times are exponentially
' ~9 s: T1 r# Edistributed with means as shown in the following table: o( B8 @( }9 R% x( {, E. X* D) w
Note The solution for this assignment is required to complete
+ f! _9 s9 D4 T' }$ Zexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
) w2 Z" ]9 I8 u. I( i Eyour model. ' f/ h5 A' l6 t1 Z, n3 r }
! O9 }3 G' ~& Y5 s, d7 j5 w
MachineMean time to failMean time to repair5 }8 t' F1 ~. ]6 E9 j& a
A110 minutes 5 minutes/ |) c9 d: }2 s& x
B 170 minutes 10 minutes
$ S8 E. q4 w; I% uC230 minutes 10 minutes2 h* Z# S8 S+ E9 o3 V; G8 Z0 t
4 \% I4 }% J: {: x4 p1 L# J) ]
The machines also must be cleaned according to the following
8 _6 t6 h& x1 R0 M$ H8 Qschedule. All times are constant:
0 U3 O2 ~5 }7 ^9 S2 ]5 `4 t2 w2 S8 O. d
MachineTime between cleanings Time to clean7 N& A$ a) }: y) `
A90 minutes 5 minutes
- C, M c* E; W/ I$ l1 xB 90 minutes 5 minutes. w1 @3 z7 P4 y8 _' b9 s
C90 minutes 10 minutes
& Y4 d4 I& O) M3 N" _8 s1 x, ]: |: H. r7 ?4 I5 J+ g
Place the graphics for the queues and the resources.
: Y) _ [- f3 U& n* |9 `- g0 ]Run the simulation for 100 days.
; A; N1 k4 y% }% W, c* j+ }Define all failure and cleaning times using logic (rather than resource 3 I8 k. N# i% z
cycles). Answer the following questions:
2 g6 C( Z. j( M3 o' Z3 ha.What was the average number of loads in the waiting queue?
" m8 i/ U/ Q+ Ub.What were the current and average number of loads in Space? 4 A7 u2 `) |! e! K3 M+ X, d
How do you explain these values?
& d Q q$ K: W, Q# g8 e- J! ? |