本帖最后由 GJM 于 2009-12-5 21:43 编辑 8 t& `/ z B; Y6 ?9 s& d
! Z. S) i7 @- |7 i
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
( Y _$ A( `" m/ g+ a1 ~3 {7 _) M( o; N H9 t
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!0 L. x" t6 `4 {2 s& a/ f: G
7 h2 B5 h" `& ^/ Z
--------------------------------------------5 s9 y( c) t9 f9 v# y0 |
begin P_something arriving& r1 [3 [: \' o+ D1 k, Y
move into Q_wait( S) S! d. ~! @0 i) Y9 ^2 P+ _* o
move into nextof(Q_mA,Q_mB,Q_mC)
9 f4 W) }, q0 c+ V" Z, a- _- O" ` use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
1 D I3 a9 E9 T# l7 r2 E9 z# O! T, x send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean); q( D* [" p+ o3 J; j/ }
send to die; d$ y R. x" A: F, R3 Q- ]- O
end8 k7 d7 ?7 y0 M0 j2 g( U
# A" }: r# C9 e! L: Y$ \0 |
begin P_mA_down arriving
4 \* Y3 W/ C3 h while 1=1 do
- B+ A1 N1 i0 R6 \6 ]5 _9 \# c+ W3 T begin) y, D0 a8 o$ J) p9 w- {* B: i
wait for e 110 min
( Q2 @6 q7 j# u) k: w. S9 H take down R_mA+ @' ]5 H* e, C/ n- z
wait for e 5 min# K# _6 L8 h% {+ q3 S8 v4 j
bring up R_mA
7 ^3 f; e. V( t! |5 ^( g8 Q end$ b8 z2 z# P. M5 D- i" N
end
1 M" }, w) g9 b# p9 [! r( G# N' b - G1 l- ^" [# j5 t" w9 J
begin P_mB_down arriving3 s) ^5 M( v; @8 M( ]
while 1=1 do ~( l1 v7 f0 N; u
begin( @1 x, q5 T6 \! n7 a! q8 \$ S
wait for e 170 min
! z. _5 Y7 E' j( E( { take down R_mB
2 {. @7 u( ^( j4 \% I7 ? wait for e 10 min' t8 k* X8 u0 p/ F* m4 V, {/ i
bring up R_mB" K6 c, |2 ]+ e E
end& Y& e7 D; P3 N
end
; O) Q' s. m. G% R
% H, s+ h0 p }begin P_mC_down arriving8 D! c8 v7 o2 n8 G7 \( v
while 1=1 do
, d: r8 j* M. |& H; F, t begin
7 g |9 t7 `1 m wait for e 230 min
E! ^- K( r$ z. c+ @6 v' f take down R_mC7 @' ~6 |$ y% p; n& |" B" P
wait for e 10 min( J/ W! J3 }& |; |7 D' p) N6 \
bring up R_mC. ?, I3 O4 [3 {. w s
end
/ y% T" u- q, S+ G9 T0 K6 P9 k9 N6 v" kend
# A6 A7 P2 C/ ~ $ n2 f/ A7 I8 m- X
begin P_mA_clean arriving1 O. N1 e. G( j# V, X3 x) M
while 1=1 do
+ o8 t; K3 {8 ^ begin
2 Q, [+ M/ C6 E2 X, J; L! H wait for 90 min
: g% p# ]* Y0 m take down R_mA
+ v2 ^% ]' v3 Z8 T/ r wait for 5 min2 v) c9 J1 g7 l) L8 i3 j
bring up R_mA
! Y$ e$ E- v9 H2 u& b0 i& H' S( V. n end9 X, [7 h+ \8 R5 e/ u
end/ Q* B" i- Y/ S. m- N, g; \
2 [: a- ~0 q$ A8 Y! G( u1 }2 c$ z" L5 cbegin P_mB_clean arriving
6 L' P: }4 C0 d3 W9 Z% v& w' r while 1=1 do0 \4 \2 c4 L1 I( n; K* x, n
begin
9 \! Y6 l2 A# R0 e wait for 90 min# G8 D* c+ |8 ^: b$ M. o' f
take down R_mB1 i4 I) o5 I9 ?! X: j+ ~1 v
wait for 5 min1 C. R8 T5 h7 c/ _+ z
bring up R_mB
& B' Z7 v( v1 @6 S h3 U+ N: L end, m. v+ c L# E' h' O
end
& [3 U: g; L* _+ E* M( a, n8 Y( h5 h 1 r' J4 j, K; N8 f) Z, N
begin P_mC_clean arriving
! Z4 e! }9 m1 l& w& H while 1=1 do& V; D( @7 v& Y) j7 [
begin
/ v9 j, V5 G6 h$ f# \) H `/ P wait for 90 min5 j! e; F R5 g: r' P3 G
take down R_mC$ ^, z5 e+ w, c! [# w* z
wait for 10 min
K0 L! Y* ~- ]0 E" C- {* ] bring up R_mC
0 G8 Q7 H r# y" ?3 G/ E4 x, ?* P end2 p( a T) b* {0 ~
end
; l1 ?) u" h- J- G# d3 D----------------------------------------! [! [; p9 w2 ]# P5 H- b5 F
7 v7 c4 G( D; r3 \) r0 W; \/ LExercise 5.9
0 m. ?" S5 C: M0 B4 _+ Z- K' y
; l% w# [ g) h; `/ n/ \! Y
1 e1 N) ^5 w1 J" j. TCreate a new model to simulate the following system:) S* O4 j- o8 c
Loads are created with an interarrival time that is exponentially
, h7 p, c+ k1 s" Z/ \distributed with a mean of 20 minutes. Loads wait in an infinite-
" L0 }" c, Y2 r2 C9 `4 Q4 F% Fcapacity queue to be processed by one of three single-capacity, ( p2 `) ]! S9 A6 H- R; T; S
arrayed machines. Each machine has its own single-capacity queue
% E9 F3 M* o/ O' \where loads are processed. Waiting loads move into one of the three
. Q' ?, f. V8 J, s1 U lqueues in round-robin order. Each machine has a normally
/ g" C* N7 h7 s( f- }$ F' Ldistributed processing time with a mean of 48 minutes and a standard
! i5 ?8 W: @: [# p0 M/ O( Q% Ndeviation of 5 minutes. u6 T7 h) R2 n: d) Y! H4 G
The three machines were purchased at different times and have
# n. p& R1 y7 c. P; udifferent failure rates. The failure and repair times are exponentially - `% N% I" X' A( c
distributed with means as shown in the following table:
0 t$ `1 A* n5 @Note The solution for this assignment is required to complete 3 _0 ?5 _5 o( g. \7 Y- T
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ! t$ c' T6 O D5 ^, ]( h
your model. 2 O1 D! v/ Y, o: R# @2 c. ?
% @, j9 z) n ]0 b- W
MachineMean time to failMean time to repair
0 `( z. v. X* S2 z% r. kA110 minutes 5 minutes
9 w! C# y% n zB 170 minutes 10 minutes
8 Y2 a3 b" Q/ tC230 minutes 10 minutes! j2 b7 O% A$ P$ W9 q2 q& |( v
+ m3 I7 T+ X7 `4 UThe machines also must be cleaned according to the following 2 \9 I% v+ Q' D6 i6 k' _1 j4 N) o
schedule. All times are constant: , X2 g3 g) U, k R8 A( W
- C) N' H0 Z( ~' `" L
MachineTime between cleanings Time to clean' l4 L7 h. \7 S* A: a& J# `
A90 minutes 5 minutes
N. C. B3 e6 N# {9 wB 90 minutes 5 minutes
8 W% P3 z/ Q3 V" pC90 minutes 10 minutes
; |& A/ b2 `8 i" X0 s. \+ c2 {" M, e) ^
Place the graphics for the queues and the resources.
8 e* X5 Q+ w: ~( h- v# ^Run the simulation for 100 days.2 P! P: \6 e7 m/ O9 ~" u. u
Define all failure and cleaning times using logic (rather than resource 5 R c2 `& f8 L
cycles). Answer the following questions:, U! O4 @" ^0 y% x1 b. I, o* M
a.What was the average number of loads in the waiting queue?
6 @. \8 K; x9 ^- }# A( ?7 P) Ub.What were the current and average number of loads in Space?
0 V9 J0 d7 _4 a6 Y3 u/ @4 eHow do you explain these values? $ D2 l% ^* ]. v& E: f
|