本帖最后由 GJM 于 2009-12-5 21:43 编辑
. e) D- j' f) N3 ^5 ]1 o/ S
2 \0 P; E) n, f, y2 r; x底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
. x; g( U6 l6 ]' B
- o" x6 E& I/ E. |/ y4 \, a4 }9 [) u不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!4 ]1 U' T7 g" o9 Z+ J
, O8 V; ^% s9 ~--------------------------------------------1 b2 O1 v/ ]1 {1 ?& O
begin P_something arriving9 N2 N3 _% y; a6 l8 N# c; c
move into Q_wait
4 H/ |, g" d! e6 K O move into nextof(Q_mA,Q_mB,Q_mC), p: p) V$ W; t- a6 x
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
1 D/ {! y/ `# r" S send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)- d: e) ?: H& i; L* z" @# E% b
send to die: P! x; { `( U/ w* C; g$ ~
end
5 j) s4 k( A8 b J2 ]
* q3 ?" v- Q! D$ nbegin P_mA_down arriving
8 Q% p; ]" I( s/ s while 1=1 do
! J9 j& ]) n' Y ` begin9 B c c: [' ^0 A
wait for e 110 min6 {5 G+ u$ g/ P% s- w- U( U
take down R_mA. ?; q' n4 ]' l# Z* m( u
wait for e 5 min
4 \+ R8 ^) D6 x) S2 p4 @: G! A bring up R_mA
+ U" w" F8 T% A/ S: ]7 [ end p3 ?! o2 w7 e1 ^6 T8 D
end
* p7 ]7 W, |+ E 9 H! F2 F3 Y$ n$ n% Q8 v, t: K8 t
begin P_mB_down arriving+ ] W. g" l# n7 l: T/ ]; k g t: m
while 1=1 do5 x5 K9 p" {. A
begin
8 d% Z, \& s [) D, o$ n5 X) S9 z* ` wait for e 170 min
: y; c8 ?* ~9 D# I0 Y( ` take down R_mB
% g- R4 u; M7 M8 t1 l2 o+ p3 X; ? wait for e 10 min
0 F$ x$ E8 |3 D bring up R_mB
8 e, h* P4 Q- I end) P2 v- G' X: x% U# l: l
end* j z! r, g) _; h/ C
% J' \8 U2 h) I6 C. m0 D4 P4 P
begin P_mC_down arriving% e5 Z* W8 I. ?0 x# C2 m
while 1=1 do
& L: e% R( l6 l) D" E begin
+ e& ^5 R0 d8 }$ ^/ L; K7 @2 |/ F wait for e 230 min( e' s5 z7 _; V3 T- E- V
take down R_mC3 N8 N# J% d4 U3 J. j& v* y1 W7 G
wait for e 10 min. ]4 L* p! Q& e3 L! y
bring up R_mC
0 u: I/ F2 X6 g: t w$ S; w end
M( D6 F- E' k& jend z! p+ t, R. H/ L
+ T/ T( r/ j8 }! ebegin P_mA_clean arriving
# g" o- C; ]9 i6 \( i5 _* h) q! I* q while 1=1 do L& G n3 R2 I% U/ T
begin- }( H: O9 L1 G$ v; D
wait for 90 min5 o& q' G( H' n) G) z
take down R_mA
/ F0 d% W2 m! Q) P wait for 5 min
, f8 C$ v- R1 U" g bring up R_mA" _) k( l' I6 N/ s
end! c: {$ Y. j% z% Z/ Z
end* v/ @2 n; W6 ]6 N% c5 m
$ ]4 w7 h8 O [ t. Bbegin P_mB_clean arriving' f* [# b9 a) M& X$ z3 {
while 1=1 do
4 l. t4 t5 u8 P2 L begin9 q8 W$ S: K- A0 d
wait for 90 min
& f- S( S& Q6 t9 o take down R_mB9 g, `6 ]2 d# G7 J
wait for 5 min
) q( W, Z4 b# k M/ k bring up R_mB
2 m7 _+ g" T3 `) e, {# S' S end" o( ~; `& Z8 [3 `7 T% G8 L
end
- O8 g; K) D" P* f* L
8 E5 v# I4 O& f7 ^begin P_mC_clean arriving
) a& P1 S8 r7 N# J! @/ x3 t while 1=1 do1 @' W* z& S9 F9 L( ?5 c7 [1 D: X
begin% s5 ~0 \$ f2 J V( w( u( V1 _* T- k
wait for 90 min. X( e5 H- N5 V) u& X% A
take down R_mC3 r% }3 g! ^: P+ Z8 h# ?- A
wait for 10 min& k+ W- a3 I9 l2 M9 K
bring up R_mC
. S @$ z" T0 r" M( z& f end
. t' B; K! T1 B, s9 c: Uend/ }+ i5 f$ l: T* y2 E+ P2 p
----------------------------------------
/ t4 l/ h' E' n $ L+ b9 h; M7 P5 J+ s- A; ]% L
Exercise 5.9
4 j8 k) Q/ C. C5 O& ~# H/ f7 [6 E7 d; j
4 s5 O ?+ q4 m& G4 W! m- D: F
Create a new model to simulate the following system:& |* @1 T6 J2 R
Loads are created with an interarrival time that is exponentially
2 L5 y# u# F) {( R C; idistributed with a mean of 20 minutes. Loads wait in an infinite-
$ J0 r- }: l! gcapacity queue to be processed by one of three single-capacity,
/ q& e# w# D- t5 Oarrayed machines. Each machine has its own single-capacity queue $ r8 v5 M$ r1 C
where loads are processed. Waiting loads move into one of the three 8 a K* d) q3 d b9 ^
queues in round-robin order. Each machine has a normally % G1 X, o2 c5 S' E3 R9 h% d
distributed processing time with a mean of 48 minutes and a standard
% C; Z8 n$ f# U z7 m ]; Wdeviation of 5 minutes.
% Y) ^4 I8 d( s) e: tThe three machines were purchased at different times and have
3 T9 m& W/ o- Vdifferent failure rates. The failure and repair times are exponentially % ]* | j5 \6 } c$ b" ~' d
distributed with means as shown in the following table:
?/ R& Q* N" A; o4 l" o3 ENote The solution for this assignment is required to complete
" m9 p- e6 H& jexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 4 W, X7 M7 Y4 Z3 @# `& j J
your model.
5 w0 y( B6 ~' x8 A6 t2 ]2 J6 ]' C- n5 N( `
MachineMean time to failMean time to repair: ?" ^9 a: n+ g
A110 minutes 5 minutes6 T' E$ O2 f( f. J6 T' c. k- t- Y% p
B 170 minutes 10 minutes9 f& d3 @, b1 R/ K7 Y( I
C230 minutes 10 minutes9 g8 i2 w0 `1 n; ?! z; i
, U1 @# |/ o* @ j+ k2 wThe machines also must be cleaned according to the following ' u" q- S! W0 b9 q7 T( w
schedule. All times are constant: ' }$ k X1 t7 f9 t
1 b% N( T, B! Y! vMachineTime between cleanings Time to clean$ T9 u: E3 @9 P7 J
A90 minutes 5 minutes8 w# b- U6 E; `/ s
B 90 minutes 5 minutes7 |! @: Q% m7 ?* v! W
C90 minutes 10 minutes
# F. B8 _8 _/ I9 o* _& J$ i
8 P: o) I; ?- s; h3 L9 ~( y0 yPlace the graphics for the queues and the resources. 6 u& |/ r i) ]& i
Run the simulation for 100 days.
' X3 ]# Z1 t x* y9 ^7 }- l9 ^- XDefine all failure and cleaning times using logic (rather than resource 5 H: M. r( Z b+ I. K0 @ b5 J
cycles). Answer the following questions:
. m& v- E9 X4 ~8 V! Da.What was the average number of loads in the waiting queue?- y- I' r& Y0 K# C U% N( G
b.What were the current and average number of loads in Space?
( M* e: o/ H+ Q1 IHow do you explain these values? + P$ Y, k5 Y- D/ y/ Z& q! Y7 e. ^
|