本帖最后由 GJM 于 2009-12-5 21:43 编辑 ) X- s8 T- F; Z# c% M
9 \" D, |5 R' W W
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
. r% E* O& W5 |0 P+ T# D
5 p) n" B9 H% [/ q不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!2 t( T C- E# S$ t1 P0 r3 p
7 y* T' r6 K5 W/ M, F9 Q( Y+ W: r
--------------------------------------------
5 m9 E' D3 _0 t4 u0 ]begin P_something arriving' k E& w9 U) |) v% a' P
move into Q_wait2 s' U/ w+ D8 c. ` s) M
move into nextof(Q_mA,Q_mB,Q_mC)4 i! f! |9 n1 h4 J1 l O9 L" u
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
1 L3 [5 F( L# j- V9 O D# Z+ k send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
' r' G, ^1 i+ Z/ Q9 N send to die
' V) j7 o. p9 [5 V6 Eend
4 A% V' ~4 X4 G
+ j6 z+ n1 Z2 ~: H/ `( Ibegin P_mA_down arriving5 L1 |- y6 v y, ~0 _5 F* F
while 1=1 do
9 T2 l# n" a* o" Z ~- F0 \ begin! y! C v# B" N8 W# k9 I
wait for e 110 min- H2 u5 ?+ i+ ?/ x: g- e
take down R_mA, |; @# D. F! ~8 V, a. }* t' v
wait for e 5 min5 i0 ^) V6 M+ w7 f! p8 h
bring up R_mA
9 K$ q7 O+ Q8 P! p/ e+ O4 D$ R* t end- z% o# |' o3 e# ^
end
( B8 F. ^ a% @# i; Y
, A, L$ d( v- ~" ybegin P_mB_down arriving, V* p9 U4 R6 P; S
while 1=1 do
/ a ]# s. a; l8 R0 B" Y( f) q begin
" N% z7 J# @" n: ]1 W wait for e 170 min
$ T8 @" U1 P8 r/ A, w) b take down R_mB& q5 } q& Q9 ^6 {5 v
wait for e 10 min
6 l+ d; P# N$ @, T( d7 \, r) g8 @ bring up R_mB: w5 J7 r- N( c0 Z y! G+ `
end \6 l8 z. t- v
end
5 H6 @6 u- E$ {5 t9 l% L( c ' x- o- w9 i6 |& d9 q/ U" d
begin P_mC_down arriving |) M( j9 I- q" G. @7 J9 P
while 1=1 do
4 R4 t" X4 N7 t4 G begin
0 V, G* l+ @, M, G- ? wait for e 230 min. X' A7 r9 ^3 C5 g- c
take down R_mC
$ c1 z" W% P5 e0 l7 }7 A wait for e 10 min% L/ O. V) @* A' X9 N P
bring up R_mC9 l- `! x! j7 N! n9 k0 l- |
end
. w& f7 S% V$ u/ i+ G; _end2 z8 B6 H7 h+ W7 a
& y% q) n/ @: U0 qbegin P_mA_clean arriving1 M3 _1 M2 \- l- K- p0 U
while 1=1 do
& b( q6 ]+ P9 Z8 x begin. [! \* x2 p0 T; s6 _
wait for 90 min
% s0 l( k, \* e# @ take down R_mA
6 Y3 z3 D9 G {4 T3 x wait for 5 min S) j& Q5 n4 ~
bring up R_mA
0 Q, }6 g5 s. K9 r end9 U7 z R4 T# ? A
end
. A) ?$ \9 v6 n; n( {: {1 D& p$ S 0 Y, ^7 C8 _) Y) i' k
begin P_mB_clean arriving; B' t$ ?1 \& J ?
while 1=1 do' [) G+ T3 V3 d0 |) w( I
begin
, P% L2 ?1 _& @+ g3 G8 _ wait for 90 min
3 |0 t0 ^+ B) y. h% y$ B+ O5 y take down R_mB
+ G( |. f" K& e4 k: O wait for 5 min- j% g& ?4 {, q: |
bring up R_mB
: f" W" G% {+ J7 o end
3 z/ G3 W* d: m$ ]) U5 cend! ~$ p) _9 m* v4 u& V" |
# ?/ ?7 G9 Y, y& X( b/ s5 |begin P_mC_clean arriving
6 |* c& a- c) y' c7 X while 1=1 do
9 Y' c+ a& g6 Z begin
1 _6 T* Q+ e$ |/ M$ |# |, P wait for 90 min% t9 N6 a2 E4 w, a; [* _
take down R_mC& |' f' c% D5 f( ?0 n7 R
wait for 10 min
3 n5 d1 o. E8 k+ R( b4 r bring up R_mC9 G" g' p. T \# |+ v5 w9 y% D7 _
end) [( g/ {; q9 b& Z- N* h6 N
end2 Z+ u( F: e' D+ A/ h1 b
----------------------------------------' N9 C+ F/ n2 k0 x
* j- @" ] ?" _! ~
Exercise 5.9
+ J4 f: s5 l& ]
8 ?: t# _2 g1 O( o# L t! i9 m
, y% W6 H M. f2 O/ l, q9 r9 l8 FCreate a new model to simulate the following system:" F0 K. ]/ Z" e4 O M
Loads are created with an interarrival time that is exponentially
F% ^' O9 ?% z! C3 Pdistributed with a mean of 20 minutes. Loads wait in an infinite-& }( [8 ^3 z& f- I. i* w
capacity queue to be processed by one of three single-capacity, * @* v3 m2 ^6 I1 W7 z! t5 o
arrayed machines. Each machine has its own single-capacity queue
6 w* o0 K) w3 gwhere loads are processed. Waiting loads move into one of the three : u' @1 Z' o; C
queues in round-robin order. Each machine has a normally . _& k8 d0 S. ^1 j+ F: g; n. Z
distributed processing time with a mean of 48 minutes and a standard
2 h: M3 p$ e7 l: g# sdeviation of 5 minutes.
1 p. I, G6 e) N) SThe three machines were purchased at different times and have 8 d1 g2 D$ ]3 p% \8 m( j
different failure rates. The failure and repair times are exponentially
9 o* H/ I& h, g9 Odistributed with means as shown in the following table: " R% O) z4 z4 ]$ C5 K
Note The solution for this assignment is required to complete , W5 Q6 q5 @/ O& }: x
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
& x% f3 A* W* O# U {0 Zyour model.
8 Q& I$ r. z7 U; F+ {" {% C+ Z
% z I! x$ Y5 m- P/ v( a1 R3 JMachineMean time to failMean time to repair7 n/ y! L+ W" `9 i$ G1 \. l" L# x- Q
A110 minutes 5 minutes9 C5 C3 {5 @3 S1 D- H- _
B 170 minutes 10 minutes" z( D/ [* E+ f) F
C230 minutes 10 minutes% C# a/ R! }5 R# P9 b0 l
* w) q& o: D' ?# C, b2 d0 {The machines also must be cleaned according to the following ( i5 c3 C+ ]! s/ Y
schedule. All times are constant: : q' g9 p/ h3 g# o3 i. f
6 c+ A1 Z! {7 S! I/ |( s
MachineTime between cleanings Time to clean
1 x. {: J9 e7 i: NA90 minutes 5 minutes
1 h: Y0 }6 y+ ]& {: z7 ]B 90 minutes 5 minutes
, x# Y" X! p/ ^: ], FC90 minutes 10 minutes
. ? W% i9 X1 E9 v8 k, P: d/ h4 O5 G9 g) M+ M4 Q" A
Place the graphics for the queues and the resources. ' A. ]% Y ^% D; B2 ]# o$ F
Run the simulation for 100 days.6 n2 K. X0 i2 e. ^+ x3 i
Define all failure and cleaning times using logic (rather than resource 0 r3 O$ S4 h9 R% @( W. z; d% c
cycles). Answer the following questions:
; M- w) j/ |. w+ Ia.What was the average number of loads in the waiting queue?2 H, N. l/ j1 h G7 P6 F+ x
b.What were the current and average number of loads in Space?
6 a0 N ^) L( V; ]# z: YHow do you explain these values?
5 }' d1 n& n4 h3 o3 K" g4 V) B+ e |