本帖最后由 GJM 于 2009-12-5 21:43 编辑 ! p+ G" o0 l/ G) f# F7 H# y( Z* Q
, E# ^0 J" L3 D* x( f) Q" K1 A5 j/ ?
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
/ c2 I( k0 _8 v/ S" X. ?' Y7 F! O' F1 I$ i( c$ ?' ]& m! P
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢! ~* D% }( r7 F* G
% k. V- l- `' \
--------------------------------------------! ^- O5 O* {! [) O. @4 V1 g- }8 O
begin P_something arriving0 v; T5 Z/ t" _8 K3 `* z
move into Q_wait
9 P# @* m% O: b. p% O" v move into nextof(Q_mA,Q_mB,Q_mC); j( j) I/ U2 ]1 H6 z4 {: A H
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min' [9 h! q2 {1 S4 h- f
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
% r K' y6 ^. J I/ S/ K8 E5 y. L send to die
. H3 W5 p2 c, p. E2 a- x/ ] Cend: N2 g6 \2 ~; ^/ K8 p
/ c2 m8 c% k3 a# S3 ebegin P_mA_down arriving
, M- U0 ^9 K! b- Z2 X while 1=1 do
I/ R" t0 v' [& T7 M begin
/ r* q% s! i" `8 o5 @: U0 b9 U wait for e 110 min
) m& {0 Y* V6 o+ ?' d' h2 d take down R_mA& G, ^4 J: C9 [* n
wait for e 5 min
Z+ S$ X" f7 I bring up R_mA
$ D6 ` b+ c8 @* z end' w% @, l) J$ A$ [$ c k; ?6 W( Z
end
2 s0 Y J: q! Y ! U% y: w& B7 a, q* t* w
begin P_mB_down arriving
# ^. h; b/ Y% S9 T. a while 1=1 do
4 W4 _7 ` ?" g U+ i begin
( c7 w1 H7 T, Z wait for e 170 min3 X2 g/ \% I5 R1 |
take down R_mB
7 r8 |1 N7 b1 c) Y9 \+ O wait for e 10 min/ ~% | l( K. L% c# v: B( u, K
bring up R_mB6 K3 u% z9 m+ @7 M' F2 b
end+ G' O8 g) ]8 T& p0 d4 u
end
3 D. f( q( v- v- u5 s $ H1 N' C7 I& C j* @# K
begin P_mC_down arriving3 l" H9 P: M$ W% E- W- b o
while 1=1 do
6 w* _3 }9 t6 O& \6 F1 i9 p/ `- d begin6 A8 y# F5 y. r2 |$ k
wait for e 230 min- b. X& D! x4 x, F# j! k- f2 J
take down R_mC
8 P+ z6 D7 s. W wait for e 10 min
# Z4 h! }, Y. K" n bring up R_mC
! t7 ^( x. |& ^; q0 W# r. |+ p end
F7 [0 P& h7 o5 a9 X0 b7 oend
/ G3 l% \# y8 z/ B; u4 i! @
' W& _4 c% } E/ m; h4 Pbegin P_mA_clean arriving
; f) [7 Z' t: _2 d. ]3 f while 1=1 do
! T0 B3 C3 R8 Y7 u begin
% K$ w( S& y" p3 c4 m$ C wait for 90 min# N J' c5 J! {8 v2 F
take down R_mA
# x# s7 `3 W% s& Z8 x3 w wait for 5 min
" J# Z$ z+ s f: Z! f bring up R_mA
( C+ y j) [* T0 j. |6 e" l end$ D+ z9 K; x& \$ `6 E% w
end
( x0 [4 w; y, G n" W. c( l/ A# s
9 V9 p u4 ~2 A1 e* fbegin P_mB_clean arriving U: b% k# X1 P6 Z( i, ]2 l
while 1=1 do
& T! F6 t; Z' _) X4 s8 D& p6 C begin# c% T2 o& W- @9 u0 j: b
wait for 90 min& F5 J* v4 \ \7 M$ j) t. J, B3 H7 ?
take down R_mB
$ o9 ~! M" [0 k5 b wait for 5 min# h1 e: n Y4 z8 k
bring up R_mB) b8 i" N% n, E3 L
end7 |3 O3 A: q7 I3 k8 G" h
end
% ?+ R9 t: a/ [8 e9 i
; A+ L6 k! M# } Zbegin P_mC_clean arriving
' f. ]8 g4 r/ V2 K0 K o X while 1=1 do( N8 U y; Y8 Q0 A# d4 x
begin
$ e' m" O1 _3 D* t! | wait for 90 min
" i3 ^, `; P6 N take down R_mC
! ]' G4 L, h* T# c+ D wait for 10 min% V# P2 C/ }9 m$ F
bring up R_mC( I% G* g$ X3 A1 k; _
end
0 h+ C- k, C# G1 u5 l- D; D" Vend2 I9 q& z1 |. n0 Q& u) B- G
----------------------------------------
) G$ D9 i9 b2 @* U9 n$ o' u % h$ O' I7 M1 V; G- |4 _: n
Exercise 5.9
6 t. m& c2 u9 f) X
/ m1 a9 T! `2 ^) N2 J- n, p- s7 L* f ^* I6 M2 ~: c1 B0 N
Create a new model to simulate the following system:/ P) U1 r% q! k! P# {
Loads are created with an interarrival time that is exponentially * S1 j7 j4 n3 R1 s+ B- B8 X" n$ C/ y4 U
distributed with a mean of 20 minutes. Loads wait in an infinite-
1 S9 V2 J" E# @1 z5 X& J0 Lcapacity queue to be processed by one of three single-capacity, 4 a+ l, [; E8 L. v) A: L
arrayed machines. Each machine has its own single-capacity queue & s) [" F2 Y% I$ I$ G# }" X" t
where loads are processed. Waiting loads move into one of the three
6 w3 d; f+ p0 I9 r- _queues in round-robin order. Each machine has a normally 5 P' X& V3 ], J2 a# J# ^
distributed processing time with a mean of 48 minutes and a standard
) J& }' H5 T3 r( i7 C2 b# K2 z k- ideviation of 5 minutes.6 S+ y, H# p/ B$ D- U7 m
The three machines were purchased at different times and have
- {0 T$ W( j0 r' [1 Vdifferent failure rates. The failure and repair times are exponentially 3 P1 o# O* f9 I3 b, s! @# Z
distributed with means as shown in the following table:
$ i# ^4 x2 D/ P8 g( @: X" }4 u$ w1 JNote The solution for this assignment is required to complete
7 Z& r$ r. p9 ^- Qexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of " c" {+ w2 _0 |: r
your model. - _1 q- i; H2 h) b; N p8 m6 \
+ s/ i: \. N0 }, Z5 X, [. X1 @- B
MachineMean time to failMean time to repair
- N' P- Q+ J3 ?. w! OA110 minutes 5 minutes
$ ], d; I' I8 R" LB 170 minutes 10 minutes% D2 c. `( F7 u6 c% q" {
C230 minutes 10 minutes- b2 t2 `/ ]7 a/ S/ \, G& d
! a Z( Q9 \5 J5 T$ S" h$ u0 {5 D1 ^
The machines also must be cleaned according to the following 9 `! L8 O: |- ?/ r
schedule. All times are constant: $ Y' v8 W' p; D; i% H- r* q. H
# O6 ]3 F5 P5 m# I- u3 MMachineTime between cleanings Time to clean2 R# D) ?; K& I% V; @2 J
A90 minutes 5 minutes' X' i( }4 U% I5 t" F' m: S
B 90 minutes 5 minutes F- d. y" K7 K8 t
C90 minutes 10 minutes) x' z* E6 E: m% J- L: p
! j+ G. J( j9 rPlace the graphics for the queues and the resources. : Y- y* x- x# W
Run the simulation for 100 days.) r5 A( a( u4 C2 j6 e" K" C% C& @
Define all failure and cleaning times using logic (rather than resource
2 Y! K: G5 o h; h& hcycles). Answer the following questions:: v5 X5 W) k0 ^3 w/ s
a.What was the average number of loads in the waiting queue?
$ O8 d( r2 A N% v/ F$ p O* C8 ob.What were the current and average number of loads in Space? 4 b' S9 }1 p1 L1 ?# E( u1 L- ^
How do you explain these values?
& V$ V- n, o( W6 h! t" q |