本帖最后由 GJM 于 2009-12-5 21:43 编辑
( u" S. _( D* ?" J. S( p4 L+ G- U
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去4 A$ ?& F$ [; J7 e* I( B! J* _
( ^- |7 v( q: r$ W3 l' _6 R不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!2 @) j9 F# |* V5 p
6 c" U' ?1 X c# ^5 E" S--------------------------------------------: e5 a6 U x& R
begin P_something arriving* R5 M4 R# S9 C1 d; w5 J9 M e. O
move into Q_wait
+ m1 \9 ]! j8 g% J4 Q( }! [1 A5 n* R move into nextof(Q_mA,Q_mB,Q_mC)# J3 Q! f' r7 ?& Y8 G6 l
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min7 E+ v) Y% B. o9 R V. c: A
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)2 a e$ G8 l+ ? b! o. Z: P, R
send to die8 N/ S* c- g. i+ K- J3 U5 G" T
end# q7 V( ]1 X7 @: g
1 Z+ S# Z# m) N- t6 gbegin P_mA_down arriving
+ j0 s' L7 Y; L" ]/ f# n; W while 1=1 do
1 s% g* B$ p9 v1 S" b1 U# k. ?- n begin5 S' e" E8 t& @* ?# l
wait for e 110 min( Q3 D+ D" O( E% `( v
take down R_mA
2 \8 ~3 |3 C2 h3 G5 P% R, d* c wait for e 5 min( `! O9 A0 W3 l& B# r+ T! L
bring up R_mA+ M4 L7 t" v/ F2 N* u
end! Z. ]7 F! L( C) x
end
4 r. S2 g! B4 \ $ ?8 q% c1 V# C1 H% A
begin P_mB_down arriving
5 E% @+ f4 W$ |# k& ]) P: H9 `2 F/ F while 1=1 do
" I# y' @/ ?% E' r% S% c; H begin
( s; U {' a# N } wait for e 170 min6 o; ]6 d u9 P4 E! x8 c4 T
take down R_mB
# E5 h/ V- R' U( \1 L; y8 o wait for e 10 min k- w" [& n f
bring up R_mB! L, G6 y$ \- k9 a! [
end" M2 _& m1 n' N4 t* j
end
' Y% J3 R6 c q& j3 y
9 m* O+ M2 D& x3 e! S" f% `/ `4 }begin P_mC_down arriving
6 \, `# a3 \& j while 1=1 do
; M0 ]6 ~4 L' K; P begin& w: P1 H% \: M3 D/ ^2 @" p6 v; ^
wait for e 230 min' `2 I. @2 _/ p( c/ m& R2 Y
take down R_mC! {9 x, R o6 _# l/ ?/ t
wait for e 10 min
$ A# m2 w b# G6 k5 W( I; L bring up R_mC
1 F. I* ^2 }2 @' | end4 q1 p& e) @. q {9 M( m
end/ w# o& |+ O3 F, r7 n+ U' M
- _9 t! O1 Z% f" p+ \0 y+ w
begin P_mA_clean arriving/ }& x8 F& l4 b9 c# I l' x
while 1=1 do
3 k& c& u: C3 h6 V( a& b9 m$ H! B begin! D( m) A; P# m* y+ f
wait for 90 min
4 [0 b2 h$ o: I( j3 x5 D9 y take down R_mA& T2 s, ]7 [+ Q/ d9 F/ R9 i. e
wait for 5 min# E. @" ?/ s% n R" ^/ j
bring up R_mA& N T& X: c' S. J3 X( V, ?5 G
end
. |, ~3 L0 m5 G3 w' B* _! o& Kend' K! J, {' G# |7 N/ _% ~5 j
4 ~" G- ^' q3 f9 [& m
begin P_mB_clean arriving
0 Q6 }* B1 d7 _% F$ i6 f while 1=1 do
9 t( _/ z/ a1 _# g2 d begin7 W/ \! W3 n; I3 u( }) _7 g
wait for 90 min
( t, V3 d! K* o# H4 b4 p5 |2 g take down R_mB. l: u3 P! V% u! x) m3 M0 \
wait for 5 min
! R( J( B& ]1 g, z. A bring up R_mB
4 n7 V$ X! Q$ l i$ \ end7 j9 _7 f% r+ [! {/ q6 q: `
end/ c) a$ I6 Z( s" q7 C" p7 Q# A
( I: _5 d1 A$ e, t
begin P_mC_clean arriving8 x1 F) A/ s* b! r7 L& w3 r
while 1=1 do
& i7 e2 i6 M6 G! F4 K) A4 t# P begin
' Q7 S0 Y) B# Y3 Q wait for 90 min
: b8 z* u& R2 T( l# C; s take down R_mC8 b1 V) V/ n$ ?
wait for 10 min
9 A) p7 P- d( j6 N bring up R_mC
) _! V* F4 I! }5 C/ \: n3 v N* k end
2 d9 a5 `0 ~: p" o2 i- d! yend
D* T' {- B A----------------------------------------
& k- m# W) o k7 o
7 p5 b) J. s8 N. W3 e8 A F" I4 uExercise 5.9
* `& R9 V, l" p% Y. `1 x! T h& `# P7 s. \) N3 c' [ n8 u( d2 G( [
/ |1 ^+ c, F2 M' l fCreate a new model to simulate the following system:
: v8 U: i+ Z2 k4 n2 y' D% `Loads are created with an interarrival time that is exponentially
4 e# i' I7 X* I! L1 F Sdistributed with a mean of 20 minutes. Loads wait in an infinite-. T/ ^5 \+ x" N ~; x9 \7 _1 {
capacity queue to be processed by one of three single-capacity, * T% E0 x$ M+ J* x* y
arrayed machines. Each machine has its own single-capacity queue , \! c5 D" f- b8 P
where loads are processed. Waiting loads move into one of the three 9 g6 Q9 Q( L- ]
queues in round-robin order. Each machine has a normally
6 ~+ |( T7 z* c7 E9 V: B Mdistributed processing time with a mean of 48 minutes and a standard ; d7 _" Z+ W; o6 `" c2 j
deviation of 5 minutes./ _5 h3 T- N/ @* g2 O
The three machines were purchased at different times and have : F# Z7 a! X8 O! I3 a0 @0 m+ T9 `. m
different failure rates. The failure and repair times are exponentially ) M: B3 D. D& r# P
distributed with means as shown in the following table:
: F) p ^1 i0 [7 XNote The solution for this assignment is required to complete % M8 H3 l8 r& E5 K v; @1 N
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 3 r9 C/ z$ Q8 {' g1 E e
your model. 7 w* c" ]5 M& x
5 k, |# K6 }, l8 TMachineMean time to failMean time to repair; G/ ^+ c: d5 O7 P* _8 a
A110 minutes 5 minutes1 s: t+ j7 ]4 z2 S
B 170 minutes 10 minutes) Z3 t, r0 F F B2 V6 k
C230 minutes 10 minutes
( e, c. q2 G i% h: p! K$ `8 Z8 q1 O& I P i" K/ Z$ r
The machines also must be cleaned according to the following 8 `8 e+ D8 s1 H" ^! }
schedule. All times are constant:
1 h4 H1 `8 Q6 y/ q) a. P4 B: d) K3 h9 u/ @7 Y1 K
MachineTime between cleanings Time to clean
! l8 H" ?6 ]- ?. S) ?5 z. x% E# uA90 minutes 5 minutes' ?/ o; h5 T/ g. U( a0 ]; W
B 90 minutes 5 minutes
( E8 A* ~2 e+ M7 ]5 M" w3 J$ {% xC90 minutes 10 minutes
) a; P# q) g+ [% b* |' ?) e" G. M$ A! t( h2 Q: d2 G1 \: Q
Place the graphics for the queues and the resources.
0 P2 o4 ?2 T0 k( _2 LRun the simulation for 100 days.
( ]& u) Y# L2 N1 [ XDefine all failure and cleaning times using logic (rather than resource
4 Y( X7 ]: x. _) @* e1 Scycles). Answer the following questions:
* C5 l+ M: H% t+ ka.What was the average number of loads in the waiting queue?( ] j' S0 |* n9 N* E) L' j
b.What were the current and average number of loads in Space? 0 f6 d. M0 h& K1 ]3 `, x' {
How do you explain these values? Y% U# ?( e4 ?) H2 u1 ~; u& J
|