本帖最后由 GJM 于 2009-12-5 21:43 编辑
$ M' b! g. x! i1 B$ i5 N$ S" p, @+ j+ _" x5 p6 S; R+ l
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
+ u4 c/ N! G' w. e9 C5 v: ?+ _1 n4 \
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
$ d( D# G: V' [/ g' N ~1 F4 Q2 N* X- v2 \6 J( B) I
--------------------------------------------6 b) t% P: S, V
begin P_something arriving
! @8 \+ M5 c# E4 x% u+ c: ?1 ` move into Q_wait: B& \9 \! |& t
move into nextof(Q_mA,Q_mB,Q_mC)
. _! }+ b* D/ P7 S( |% o1 f. [3 _ use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min* e) Y" l! A9 b$ ^ C( E
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
9 L4 u& G, W/ @3 @& G3 r9 G send to die7 B* B1 K& `; p( \$ C
end, B- E" ?" T+ a- G
4 T3 q7 q, T, |- B) H e
begin P_mA_down arriving
. p# F5 `: T& P% Y& {3 d, u$ l while 1=1 do
& k4 ^0 c8 v& i begin0 m A$ R0 z, L" r' X/ ?2 d& t5 G8 C
wait for e 110 min$ Z4 q8 R" r$ m, s3 r: A& f
take down R_mA9 {0 B; s/ i8 T1 T
wait for e 5 min, j3 U; q: t/ _3 G" u0 s
bring up R_mA
0 G6 \8 f7 ~$ z k7 b9 b' V3 V end% Y. T% y. k+ s# R% K* U
end* M M+ W; g* C" h% n$ n% E9 t Y
) d' f. [3 l6 L( o8 W/ h. Zbegin P_mB_down arriving
! l9 l8 j+ x: B( X( |6 n% T while 1=1 do2 h4 q& a; [5 z$ V' J& X* B9 O! ]
begin/ a) r2 P) p. k* h( e
wait for e 170 min
9 h, Z9 B, w/ c" X take down R_mB
F) s' l: m% R wait for e 10 min
/ }; b$ J( A% O/ U" ], `6 ~( j bring up R_mB
: s4 t. ~. b* y0 O- H4 `/ P end- W$ ^; u4 N2 l5 Y8 r* F
end
- |( q( j) L! o u+ ?8 T
, t3 D1 k7 O, ubegin P_mC_down arriving
. N' ]7 l% [& S6 k2 O* E while 1=1 do
( _0 T% A; T4 {$ @+ v7 ~- B* S* C begin g. N) `& q5 B4 `
wait for e 230 min
* {- u2 V: F, B- C take down R_mC# G; ? ? p4 d+ \
wait for e 10 min
6 ~( J. U. |* s2 _; W bring up R_mC& K! V/ Q! I( x U) H4 x9 B0 q* ^
end) ]! [4 a1 {. ~+ q
end2 M3 H9 h1 _% d8 E9 o
+ Y7 D* a2 A0 o" c* ^( X
begin P_mA_clean arriving
+ R4 b- l2 u n- r( b3 @ while 1=1 do7 R$ j1 u. B" y8 g0 Z, h3 a
begin" a/ L1 o; {% @# d
wait for 90 min
2 l8 W# b6 U, K$ Q4 \, o- B" Y take down R_mA
! m7 }# e* _) A wait for 5 min0 Z& \" p* c( L' @1 M' z$ b& b, v
bring up R_mA
6 i+ h; ?, c f+ [5 g end* F0 Y4 G& Q0 j
end
! b8 @5 X; t, j' x' h * H' u7 c! v0 {: |7 W
begin P_mB_clean arriving) M" ?" M N/ Y- k, s
while 1=1 do1 l0 `3 R% c- G4 f2 E$ y! r
begin
, D. ~' a5 o! d E9 p$ t9 h! a wait for 90 min
3 n) B# p8 q3 | take down R_mB
( X- U% ?# M5 V, w# V) p" Z0 E: Y wait for 5 min
* \8 V1 h/ x: r0 \ [) `. H2 y2 j bring up R_mB& n8 W) H( X0 P$ _4 e
end6 _) J( J* [% g
end/ y6 Q7 F3 j, F0 B( {) r
5 ~2 U4 C' z/ @) J9 X
begin P_mC_clean arriving
% ?. P4 I V; `: W1 ]. y while 1=1 do
; d3 F% K2 _5 `% z begin1 A" z, f! `; l2 |
wait for 90 min3 J: y* O+ w5 P9 y
take down R_mC
: I; f, R0 j" g$ g wait for 10 min
- d3 Q( X& y7 ~9 s bring up R_mC* Q- k9 r3 V% b' Q% o( G" S/ B- L
end: o( D2 t/ Q! G u6 Z8 N
end$ U) M* Y3 B1 d% d" }! L, m9 D2 k
----------------------------------------5 j1 d- l, F _
$ ?, {6 m* j$ K* y2 L8 z' l* {Exercise 5.9
3 `+ m+ Q6 v4 l) o% g- L& h5 @- r0 F4 y1 H$ o
+ s: } F; H# i$ K& q- G0 ` WCreate a new model to simulate the following system:3 `+ D+ y' W# _9 K
Loads are created with an interarrival time that is exponentially
9 e& U+ h" Q; _distributed with a mean of 20 minutes. Loads wait in an infinite-
) k% ] o: `4 Z+ l& Z: dcapacity queue to be processed by one of three single-capacity, " ^1 @8 a/ l/ X9 c! c- S
arrayed machines. Each machine has its own single-capacity queue G% k) L6 L. Z
where loads are processed. Waiting loads move into one of the three
b' p) Y8 e. z' U5 o5 B5 Equeues in round-robin order. Each machine has a normally
e6 G$ h( J0 Vdistributed processing time with a mean of 48 minutes and a standard
; i" o2 W% G$ |4 B3 Q; b Mdeviation of 5 minutes.& D5 y6 I* Q* E0 }3 }$ p% s E
The three machines were purchased at different times and have 4 O5 N9 K& c3 v2 W2 d
different failure rates. The failure and repair times are exponentially
$ B8 Y8 C0 l* c- L$ x7 s/ Adistributed with means as shown in the following table:
5 b/ y6 B* `- FNote The solution for this assignment is required to complete
$ v& y! x, a8 e, E) fexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ' o) S q: S' E8 o: a3 @0 M
your model.
d. T9 v/ Q1 }8 c8 [1 K/ R& v; Z" z6 S/ D! c8 Q" I
MachineMean time to failMean time to repair
4 M# X$ ~# \, q+ @0 n) fA110 minutes 5 minutes
% R* W4 X- \/ C- |B 170 minutes 10 minutes& X9 `8 t# P0 a2 ?
C230 minutes 10 minutes
+ `8 @& K9 w8 K$ {/ h& M2 `0 P6 k/ q. X/ \1 w' C* U
The machines also must be cleaned according to the following 1 u8 W7 T+ A: f
schedule. All times are constant:
3 {$ X( W# P; h b+ f% J$ R* i; |# u- Q
MachineTime between cleanings Time to clean
5 i7 p2 n# f& l( a( Y8 tA90 minutes 5 minutes
$ A5 x2 D2 W- H% ? `& N. Y' iB 90 minutes 5 minutes6 `/ i+ r$ c* w5 I0 _
C90 minutes 10 minutes
4 F, M3 @: {! o( S9 y! F% U$ }+ N" O! j7 p5 e
Place the graphics for the queues and the resources.
5 q: u/ D0 a2 `3 _+ rRun the simulation for 100 days.
/ K/ i: ?; R6 N2 O2 L) uDefine all failure and cleaning times using logic (rather than resource - V/ k M" H0 z1 w& q# Z5 D
cycles). Answer the following questions:
* z; z( ~+ e: [5 oa.What was the average number of loads in the waiting queue?
" B1 `! f3 A( V: C/ N0 _, S0 eb.What were the current and average number of loads in Space?
: p l6 y F1 h P v9 EHow do you explain these values?
8 g8 B/ O, i- |' Y% i" q1 A# p |