本帖最后由 GJM 于 2009-12-5 21:43 编辑
! ?" g- ?7 W1 z8 }+ i5 l5 \; v8 J" p4 F" J/ \$ ]
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去! [) i0 X8 Q- f" A
0 j5 F' m' {* B: g
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
9 k: ]/ d5 M5 c/ z1 z I$ }. m% h8 P) B, O# J- U
--------------------------------------------
, M' n5 h9 B9 `3 b4 ]- dbegin P_something arriving9 Z7 v9 |7 b- x( x
move into Q_wait. P, {9 f3 t% y; O; _
move into nextof(Q_mA,Q_mB,Q_mC)
: b$ D% R w5 }! D use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min, X) N0 J. |& J! e: k! A
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)$ c4 [: g" A4 M5 k& \( v3 j f, p
send to die
" L% W; o+ z* Q: V7 N- D# |end
/ A8 q! u- P; _$ @ # Y, ]6 u9 h/ F _ R9 K
begin P_mA_down arriving- i& w6 [9 P& ], m9 n. I+ X
while 1=1 do
. C# W2 k" s6 ~+ p begin! y* |$ v0 V% b7 ^0 b) Y
wait for e 110 min" U- u* W! N# |$ X( h& U3 t5 q
take down R_mA
5 O1 ~& Z% k8 E: M4 t wait for e 5 min
0 ~8 G- q% v& p! c: {% f" y bring up R_mA
. E( g; @2 ~7 e end/ m# l3 p V: ^9 h+ ^
end# ?3 n1 I/ C) m+ A$ s+ ?) F# D
9 A( T8 k3 X( \; wbegin P_mB_down arriving y- p$ A# b* y* g$ Z! Z
while 1=1 do
# q. ~- S+ W. b" j; g2 O$ Z begin! }$ B' }2 m8 m' a- v% ?+ o
wait for e 170 min8 A' b ?9 D& ]+ C( `
take down R_mB
2 X K4 b2 H& {+ ~ wait for e 10 min
, O- N# J% w# d& Z a* e bring up R_mB
! u. T: n; d9 U" A end/ e& l4 s% j3 p- h
end
7 _( L" i0 H% p; R9 u& {# C ' C0 x# e" p" A& }6 H1 j/ _
begin P_mC_down arriving
6 ^2 S, p+ Z- n while 1=1 do 7 v* b2 Q, j( z2 R. `9 E
begin
, F- V4 w9 \2 a1 E% J wait for e 230 min% l# S H7 B( k8 {1 V
take down R_mC
1 y$ |2 h% F/ _6 @* M8 j wait for e 10 min
$ z% a; H! r/ b9 Z0 r bring up R_mC
5 Q( G u: N9 K; z end
K9 J8 t2 s% ~! D' Tend6 N6 `# S7 b6 `6 x
, v$ c2 V/ c2 c" ~1 C
begin P_mA_clean arriving2 D0 M' J) n, h
while 1=1 do
; f2 S2 D ]7 Z/ n3 S2 [! V begin
( Z3 M5 a6 _) L- s2 v( [ wait for 90 min; `- Z- C' ` R& [1 C! B
take down R_mA ^5 Y# ^. } I; G- f
wait for 5 min0 U1 g+ _, c, T6 g3 s0 l
bring up R_mA
& x6 C9 z H$ K% O$ n end
' p6 _* d9 n" @$ B- S& Xend
2 a& ^/ F6 s7 U. h7 w
4 Z+ V6 D4 k! R2 q4 [( }% d, s1 k+ }1 r9 zbegin P_mB_clean arriving
/ c$ l+ A2 }' Z8 ?: c% R while 1=1 do
" K, L/ r' t6 ~! r) u begin2 z, q' y7 ?6 p( ^% k
wait for 90 min
" x9 B+ y3 r9 t# X" `, n; ~' z$ ^: a take down R_mB
7 [* |: L+ F! F* p, f* @ wait for 5 min
* k f/ R9 E; t; i3 x bring up R_mB* g; Y7 M2 ^1 C# r& _9 U
end! h* l2 _0 W8 a# k
end5 Y- M9 l# b1 c8 `
3 m1 b" z. s# q- T J( O
begin P_mC_clean arriving
8 M1 q8 o. l. C) l: i while 1=1 do
- _& g* ?0 p1 N* W8 s begin
8 |2 z: @ z. m! n+ o" ~, ~ wait for 90 min
7 d! y/ Z' }0 c. u2 l take down R_mC0 V: k( P9 M& U% j4 l" X% |
wait for 10 min1 a! b3 I1 Q, ~- G: ~. k5 n. F+ X
bring up R_mC7 l" R1 S6 M* z% P8 G
end
! F" ?/ D8 b& s/ r u7 U1 |! s7 w7 t4 a- Cend
2 U1 J2 a0 z! D% {9 m- S: ~) A----------------------------------------
0 Y) a0 L ?0 g9 i2 l
5 Q; ?, p) Y% c* g5 ? M, S6 y- rExercise 5.9" |% \, a+ Q# u9 h" ]2 U8 R9 y7 \
( o" Z; ~# ?; K$ s' I% X+ S5 V3 X
2 D# s0 o, p G: p; H
Create a new model to simulate the following system:
' I' z6 `8 U# ~2 }Loads are created with an interarrival time that is exponentially
8 C9 u0 ]/ A+ S$ w! X9 Qdistributed with a mean of 20 minutes. Loads wait in an infinite-
; b* M7 Y8 [- V! gcapacity queue to be processed by one of three single-capacity,
M. a0 o9 |/ Barrayed machines. Each machine has its own single-capacity queue 9 q _8 [) p8 S6 k
where loads are processed. Waiting loads move into one of the three $ N" I7 z2 h/ f' ^
queues in round-robin order. Each machine has a normally 0 o7 P1 [) [6 o- e7 G1 }
distributed processing time with a mean of 48 minutes and a standard
1 q F" {; w4 z$ O0 U2 Gdeviation of 5 minutes.3 H% r: i- o' N
The three machines were purchased at different times and have 2 ]- N, p, l5 N F
different failure rates. The failure and repair times are exponentially # O4 |/ M7 ]1 S# Z+ R) w' _
distributed with means as shown in the following table:
- P& b4 h& I' P! y, ?5 W. z( J; ^4 V1 YNote The solution for this assignment is required to complete ) o. h( t N; C" j' e9 F
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 5 A. o# F! B2 U# x1 Q
your model.
9 E6 B' d2 W7 G* u3 A" x$ h5 T/ o& q2 x1 F# J3 b) c. a5 B, a
MachineMean time to failMean time to repair7 D/ D v/ a) V0 k' H& L
A110 minutes 5 minutes% d* h, b' l* ~3 ~- a; l/ p
B 170 minutes 10 minutes+ ?8 i0 x, n" F, B
C230 minutes 10 minutes' I+ q0 \; K a) K
9 z4 ~1 z( T: T# f% Y: _9 n
The machines also must be cleaned according to the following . A1 X$ Y" v6 F6 p# t3 Q3 X
schedule. All times are constant: ' p! Z3 `' I5 d1 Y8 K& V1 j$ a
' p! `- _8 n4 G2 i2 R' K
MachineTime between cleanings Time to clean( Q. c+ o5 t! o5 Q. T1 D
A90 minutes 5 minutes- s, U8 ]# q" L$ t. f3 `
B 90 minutes 5 minutes
. y1 W3 W' R/ Z- DC90 minutes 10 minutes
- F2 h0 O: @5 z# p4 V$ O2 P* T f# y9 ^% H
Place the graphics for the queues and the resources.
! ~4 A& d3 N5 n! u$ k9 ?Run the simulation for 100 days.
2 v" C) P/ P6 ^& H6 A" c. R% `2 ~Define all failure and cleaning times using logic (rather than resource / F; {% N2 Z& T$ s0 f6 ~0 _! I
cycles). Answer the following questions:
& Q2 X; ~. r8 i: |! c8 Z3 R* `/ Fa.What was the average number of loads in the waiting queue?
. d. `9 ~; `0 E8 R! e8 cb.What were the current and average number of loads in Space? # ~7 O+ f8 F& E3 b& Z! f! x( ]" V
How do you explain these values?
8 F# u% `0 }: q) w |