本帖最后由 GJM 于 2009-12-5 21:43 编辑
4 K: [5 O: F% J8 P5 o
1 H1 x$ d' W. m* `底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
) U7 Z8 [* x) R9 T4 Q, W/ l) p
- v; v$ L7 ^. Q. W4 `不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
$ S3 Y6 h" Q# g- ~1 T( J, q
$ g* ~, y2 H& `0 Y7 e7 @--------------------------------------------
8 v: ~ A+ Y4 V% w6 k/ I4 Rbegin P_something arriving) }& F) w% h; l6 v8 F- X( q9 c6 J3 O
move into Q_wait6 P7 o5 l1 x* ~- B( l/ M* ~
move into nextof(Q_mA,Q_mB,Q_mC)0 u: S3 e9 s6 O! G
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
0 R& g9 ~: k5 } send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)" w: a9 ?* Q* y: B- U( z# {4 V( H
send to die4 z2 y" H# b8 S0 x" U) Z2 i9 }
end3 ]( r7 N/ }% J, w6 J
) I! \0 ?7 v2 d8 B
begin P_mA_down arriving/ k @. i+ X9 y t0 c7 \* {4 E% v
while 1=1 do
6 H0 H1 A5 e% y. h* X7 v begin
5 R+ ^1 V" q7 |( y wait for e 110 min9 H& _8 s9 n" N, p! @
take down R_mA
0 E0 J. {9 o% q: g wait for e 5 min
" B; q9 ^8 k$ A+ H bring up R_mA
, f6 u0 P+ `( t! p, a8 z% W end( ~' }! B3 K9 E; K
end
7 [, p+ d! U* o {: U" L * S/ M0 t( S! Y {6 u2 I& v+ D
begin P_mB_down arriving
9 f: c* K! U9 _3 q) {" p! {7 | while 1=1 do% c4 R- {- y& B
begin# _" A$ }" ]. P+ b# |' B! v6 P
wait for e 170 min
6 Q1 [( a) I; @. V# m2 t take down R_mB3 J* t" u8 E2 {5 \7 Q o9 g/ n
wait for e 10 min
2 e& p7 a) J7 u8 l: K7 P* A; P5 o) O bring up R_mB* j8 n7 f2 A3 e- Y4 k, J% g" j( N( ?
end
4 o. ]+ W, G1 m# Q7 w0 Yend4 J0 K5 ]! C& M) U. j
- a: E% d5 }; b9 I% ^begin P_mC_down arriving" ?. S. d- P% _; ]3 l" @1 V! O
while 1=1 do ; f. ?% x: q" O1 ` B
begin! Y, a ]1 I/ G0 s, [
wait for e 230 min9 v% r- M/ ^: V2 E+ g- i, a$ G
take down R_mC
5 r( j; j% Y* S' M7 F" ]: I wait for e 10 min
3 E% A. {! ?7 U& l7 ?% s0 C J bring up R_mC
5 L# }7 E) c9 A2 C end$ f' ^+ I) t/ |9 G
end
/ t$ Z4 Q( b! r4 x) Y3 I
5 l- I/ E* L1 v/ z. u& Xbegin P_mA_clean arriving
z3 b0 w$ t8 {: t+ @ while 1=1 do
0 T+ T& l: V2 g9 R ~ begin
0 r0 w+ W5 i) z: Y. V3 f# H- ?5 Q wait for 90 min
- I: P/ [! m* e/ F- P' b8 C take down R_mA
; T0 H6 {& n* @' R; g u wait for 5 min
: |+ b9 Q/ T, t( g% t3 i6 v bring up R_mA! N- _$ r# l) ?( a" p/ o3 R
end0 T! R8 B. |. y+ f! t2 X
end, J$ t+ L# H) U5 d. b4 o+ q/ ^
- G @1 b0 _8 Q& j& Qbegin P_mB_clean arriving
$ d3 P( P( S# O1 o- b% @' Y7 M. {) @6 J while 1=1 do
8 @% S6 C0 W& n& q begin
! W4 K+ i6 L M! ~5 _ y8 K9 F8 p wait for 90 min: p1 X2 \- G) b/ ~# Q2 M
take down R_mB
$ n/ y4 {8 R/ H) w j8 S wait for 5 min
3 u& w8 m/ m; L2 h6 q) F$ k bring up R_mB) Z! u5 v6 t' ]) z' f
end
- E& C a" W0 Nend# q$ T( b- G7 @/ [
5 J6 W `2 b. r, Lbegin P_mC_clean arriving
) Y7 \( z8 V+ V) ]4 ^, \/ g } while 1=1 do
, X& g9 v' V6 W8 b0 f5 o begin
# R% }6 o# P3 ~, `& I" v wait for 90 min
4 R: r' K2 }+ H: z( s take down R_mC
0 P* n- ~/ |1 o7 Z0 r, q wait for 10 min
$ t$ R) R! F0 g e2 a1 h; Q5 N bring up R_mC& F- C6 g7 k! ^$ B, z
end
! m) p# G6 I9 w8 S. b1 gend4 g5 O% h+ u( C: ~" v g
----------------------------------------: J, y/ G' P& g! ~" d% w4 a& o
: m! m9 N- _+ r+ D J
Exercise 5.9
T+ s' R8 f# ~/ U4 H+ O8 Y1 Y, y" ?/ x( @, R; P
6 r/ G5 [% M2 z I. R' }0 qCreate a new model to simulate the following system:5 R; G& j( d7 n6 K8 F( s/ q/ X
Loads are created with an interarrival time that is exponentially 7 O, Z4 F+ ~. E
distributed with a mean of 20 minutes. Loads wait in an infinite-
9 i* {. |: K/ e+ R# ]capacity queue to be processed by one of three single-capacity,
9 b+ e6 A, @0 c) Z5 `% \arrayed machines. Each machine has its own single-capacity queue
$ ^* Q) {8 Z0 g+ I% Nwhere loads are processed. Waiting loads move into one of the three ' D! E- s+ G$ a; h; s
queues in round-robin order. Each machine has a normally
) L. d$ Y5 K: c& e& _& O8 [, pdistributed processing time with a mean of 48 minutes and a standard
% s$ {( L( b" C: Vdeviation of 5 minutes.
3 r l* N9 Q, H# U0 pThe three machines were purchased at different times and have " V- f$ U( F+ f% m
different failure rates. The failure and repair times are exponentially
- }4 g$ v+ Y5 ]distributed with means as shown in the following table: 2 \$ N# }: e! y7 ]
Note The solution for this assignment is required to complete + k4 l4 k. T, k6 p
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
; Q( B& H( P3 d4 @7 p1 a7 jyour model.
3 Z$ c) a/ n: [
2 u2 h3 |9 d4 h$ M! E8 LMachineMean time to failMean time to repair
/ P3 ^* k7 b7 p) `$ J( u. YA110 minutes 5 minutes
0 b+ g9 s4 N1 i* gB 170 minutes 10 minutes1 A$ W- ^6 R/ l7 n
C230 minutes 10 minutes+ B4 M5 u* A, x0 {. _) n
0 X$ ]4 W4 S" I9 S" KThe machines also must be cleaned according to the following
- \' R+ ]8 c+ z! Hschedule. All times are constant:
' k' X; R! o5 T' g) j& E4 Q
6 A/ c: u5 I2 M" `% G. xMachineTime between cleanings Time to clean; H' F9 l! Z) E1 M. F4 x2 U
A90 minutes 5 minutes) ^& S4 f2 I7 [4 }2 c, m4 x# H
B 90 minutes 5 minutes r% x* _4 W8 B, N+ X0 l8 y1 I# J
C90 minutes 10 minutes
' k6 m3 \/ Y4 W) I" C
) `; `& T0 n5 hPlace the graphics for the queues and the resources. * N1 h* ~6 {2 n( |5 v
Run the simulation for 100 days.
4 f% J) r5 c9 S9 U4 ADefine all failure and cleaning times using logic (rather than resource C- d, c4 u. c& p7 O
cycles). Answer the following questions:
( P3 M- G Y9 z- _" A! z4 la.What was the average number of loads in the waiting queue?- F8 [8 P1 H9 c& P, Q1 u0 X
b.What were the current and average number of loads in Space? ) ]4 t7 [4 m) B( a! N4 W( K
How do you explain these values?
. y; q+ R5 o( ?; O( k6 T% A0 x |