本帖最后由 GJM 于 2009-12-5 21:43 编辑
! P8 u* O/ C) r
! T2 Q2 c. F* c底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去. t! V4 G# _4 m. j8 W5 L. p ]
8 d- G9 s1 f. A, q
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!' V( u' `2 t. @0 q' `0 b
* p5 B4 i- c& P- s. G--------------------------------------------2 d N& H8 P- B4 u" b& T
begin P_something arriving
y7 S" e \; g, d* L move into Q_wait! K5 Z( d+ V! D7 t
move into nextof(Q_mA,Q_mB,Q_mC)! Y9 H: _+ k1 T
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min. _8 u& f) u; G B# \5 E1 F
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)' C: B3 Y1 A- T$ z1 a
send to die6 ]* c6 t/ D/ k# i
end2 Y/ O6 U- j! F ?4 c [ p
' C: j+ j' R' b; `begin P_mA_down arriving
. g& G! x i1 j5 k& b while 1=1 do ) }$ Y" s6 D+ i$ r/ ]" H6 H
begin
7 c" Q" y- ?; w. O wait for e 110 min) h% W! M& v6 V+ F K% Y( U& ]
take down R_mA$ c1 P1 n2 T6 O6 Z/ w2 A
wait for e 5 min
- P% b( Z- G* g! ~0 C bring up R_mA9 R5 V2 Z1 {7 J' K- o5 A5 W* }" k
end3 a; n' A+ x; t9 p( @
end% ?; R$ d, m7 k/ _
* \. B% a+ V+ ]3 d# m% @ obegin P_mB_down arriving7 x) u. J7 P" S* \: A. [0 h& _
while 1=1 do4 ? v& F! }- c/ Z: I A( v
begin, f9 j$ C4 X+ J/ i4 B( O
wait for e 170 min
K9 m1 D/ w H+ r) v take down R_mB8 i; V0 K; p) ^& }, E
wait for e 10 min
2 Y( P$ v6 ?8 h( _1 t& d4 s5 ~8 \ bring up R_mB
4 M1 }% f# \; W# x! V end! n; N. S9 s: t: d
end
' h* @5 {: N6 M* }: B- D 5 P" \( q: |* h' `3 q$ E8 ^
begin P_mC_down arriving$ \4 L$ i0 @2 Q8 {: @/ F& G) i
while 1=1 do
) ~! n+ C6 G( @8 {9 {" @/ k begin6 W. a5 x& N3 @, u5 S5 d7 s- ~
wait for e 230 min$ c+ T" v; h4 A* K
take down R_mC4 _1 {5 G9 H8 f- ~2 V3 |( E2 c
wait for e 10 min/ S( h1 M$ d# ?% V
bring up R_mC
, c# V ^( T$ Z end
h1 o$ b1 B" ^0 n. I* Zend
, E: c3 n- @' Y7 d4 B & M$ z. Y+ {1 O8 b' a3 p
begin P_mA_clean arriving
* i9 u! Y- f2 ?( v8 A# B& t/ B5 j4 Z while 1=1 do
% w/ W, g! l4 G+ W% {: \" D begin( B8 y6 C0 O9 r+ T) Y
wait for 90 min3 |0 H- C( f- d# ~, \
take down R_mA; U/ ~: x" b8 w! J% g' b1 U
wait for 5 min
% b/ `2 \' K+ }0 M- N bring up R_mA
1 l( v2 P0 ~, d& I4 G3 H end+ D3 w, v& s; l! i0 z% [' i! H* T
end
) P$ x! ?7 A Z( g2 s 0 U" M! T. v3 Z1 e
begin P_mB_clean arriving/ z# `, E* O- G
while 1=1 do4 M5 Q3 e' |# ]- s- O. |! l ~# E/ t
begin+ a9 ^: M7 M6 |+ }/ t7 j
wait for 90 min
- i: k7 u2 P3 z( @6 ~ take down R_mB, A4 V' N6 H: }
wait for 5 min
3 `: }' y: i+ y# F5 ]( V$ g bring up R_mB
j j" e& q& D+ o end
% b1 f4 i- }* y' R6 x' ]end8 D# `; d( r% z! j- c
9 ~% X R. C% u4 d! w2 T, f( k
begin P_mC_clean arriving% T' l+ ^0 E( |* P- }4 v& L
while 1=1 do* W |" X# {, b$ T/ y- [+ Z
begin# o3 d! _9 |% d K3 H: R. x$ u
wait for 90 min* e, P1 _3 E) j9 W5 }0 K
take down R_mC
. Z$ B, K' E9 x, n wait for 10 min
# n: P- y0 f: {! D6 V) C+ ]* m2 s bring up R_mC
7 C. V" q; @4 v2 G, q! P: X# I0 ? end# S: N4 G8 w" O* b3 g1 I: Z; S
end2 ~- I. c9 b5 n3 @9 m* l! u. O7 ?+ g
----------------------------------------
- k. V" ^0 `# W3 [! d9 I
" G' [! P" x% Q( m( YExercise 5.98 o" k0 n) ?, z2 {8 R( d
4 n: U% c3 W! v
3 J# T( a0 g$ v: D5 DCreate a new model to simulate the following system:
0 f- F2 r z4 y7 ^' w MLoads are created with an interarrival time that is exponentially
! A5 l/ ~9 k& R+ M" P3 }distributed with a mean of 20 minutes. Loads wait in an infinite-# ]" |# [9 p6 f4 O0 G5 Y Z
capacity queue to be processed by one of three single-capacity, 3 ]: Z! h5 K2 V# ^
arrayed machines. Each machine has its own single-capacity queue . d! g' d4 p f( O3 r
where loads are processed. Waiting loads move into one of the three ' V+ Z2 v' t& E; w$ }# K* I
queues in round-robin order. Each machine has a normally
6 C7 ^6 T# {1 ]6 p/ E$ P: F0 Ndistributed processing time with a mean of 48 minutes and a standard , _) P! N, C/ {+ C
deviation of 5 minutes.2 \( y2 }9 S& W( l
The three machines were purchased at different times and have
: b+ v% q7 \5 ~2 H6 w2 cdifferent failure rates. The failure and repair times are exponentially 4 P: s. S* Z# B6 q' s- |
distributed with means as shown in the following table:
% L& }& ^8 d0 E+ ~! TNote The solution for this assignment is required to complete ; p1 y1 a+ ~# T+ i: Y
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of . j$ q/ s: o: {, _; A
your model. 7 D' G) ~# X7 K
' h' W/ P6 q( M/ W+ i
MachineMean time to failMean time to repair: s, F: P a# m/ J, Q
A110 minutes 5 minutes
/ t: i$ v4 V% ]B 170 minutes 10 minutes, y- y; U( k1 P% f9 u' @5 g' Z& w
C230 minutes 10 minutes0 ]: g4 P8 X4 V6 A% t
# c! @- ?, @" I& o. FThe machines also must be cleaned according to the following
) ^1 W3 q% B" ~* {schedule. All times are constant:
, Z4 N( o; n3 S1 ? S% j$ _/ X3 Z; G4 I! i
MachineTime between cleanings Time to clean
: T" E& n% l' W, l0 j3 WA90 minutes 5 minutes
( S% y) B ^3 `3 \B 90 minutes 5 minutes
3 u! C9 F" ^2 g9 V: u- }C90 minutes 10 minutes
* C. q) D2 V& {$ q) o
9 d2 V2 B/ J8 d, pPlace the graphics for the queues and the resources.
# x5 s* G" X0 k& D! e, ~0 LRun the simulation for 100 days.
. {/ }6 O" _, i* ]$ TDefine all failure and cleaning times using logic (rather than resource
4 d# V7 | Q" k6 h' y3 k+ Ucycles). Answer the following questions:( F4 q* b" F& z8 @
a.What was the average number of loads in the waiting queue?
* S% H# r" k/ z* Zb.What were the current and average number of loads in Space? ~% q9 O0 |( a) ^* ^0 P
How do you explain these values? ! z) j9 A* T% h: j/ |5 j% W- z' h: l
|