本帖最后由 GJM 于 2009-12-5 21:43 编辑 7 z1 l7 Y: p. u7 q- j! O" Z, A- p0 k
6 i& V+ h4 C* V& W" s$ ^& c( X
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去6 q* g; s) a, L8 F, h$ D
. A) G3 i/ r; C# c+ G
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
5 a' R! e! \ X& ?0 h5 z7 F( a2 g
4 [+ S3 o8 B7 R9 g- b3 r$ I% _9 m--------------------------------------------
* z5 H+ |8 R' `7 Bbegin P_something arriving5 o2 R' P, z* x- L7 }9 V5 e( }
move into Q_wait
9 M9 N! ]" P# B5 z move into nextof(Q_mA,Q_mB,Q_mC)
$ b( B: ^4 d; J* y8 k0 ^ use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min% Q6 J: d+ }' _/ r
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
0 z+ J6 b2 x1 o7 z* v1 q- X3 h send to die/ t1 W8 _4 M! }5 P- }
end
1 M; R. [2 f7 ~) E/ a2 C S3 F3 k
; h* A7 W& C0 q& ?$ |) }begin P_mA_down arriving5 q. x; i6 N8 L& v8 x) F. h
while 1=1 do
# Y" r3 Y) ^; A6 N# g4 {" l begin
6 m$ g: m0 u/ J- [) S! q5 u5 _7 Z1 d) @ wait for e 110 min$ L0 i0 Q$ s2 W/ @. Z9 o
take down R_mA. _0 Y+ e @7 ?+ h1 p
wait for e 5 min
4 i* u; m3 D T& { bring up R_mA O2 Z. f/ _5 G* h; U( ?0 @
end0 f7 f8 X5 D! I# p% h
end! n! p7 }* d2 Y; ?' g g+ g& c
$ H# h( x, T4 `0 N! C8 u
begin P_mB_down arriving
( A+ t1 M* G+ L2 Y ?% _2 l* ~ while 1=1 do
* |3 Y9 o9 Q9 r' [& d# V" Y begin
6 O9 R( B- c% R% v wait for e 170 min
5 x6 l5 d7 }* c4 u& a8 b take down R_mB$ e! x M7 Z# [+ q$ {3 i9 b' z g
wait for e 10 min/ H6 O+ ^ c' I
bring up R_mB
( S8 i3 V' ]8 Y/ w$ @3 u end6 {& b0 w% D f
end
5 g) S/ {. H" d) g ; P) V* Q- h) t/ B" Z/ c, D% q d
begin P_mC_down arriving
: x3 A2 ]% a+ }5 C m2 l; P5 t while 1=1 do . m+ R6 K: ^( I. K
begin7 z) s. X0 o9 W; L
wait for e 230 min
3 _/ y' \4 @/ \) \ take down R_mC# K' s0 H6 V' s" @ J
wait for e 10 min
" m) B4 }, v, g0 z' O bring up R_mC
9 Z; Q8 r5 ?- C( c! ?3 m1 A end( a. Z8 R$ W9 C) \/ y# Z8 u
end
5 F3 ]. r$ F% N/ K1 ?; |
?5 U+ T, r1 gbegin P_mA_clean arriving
: _0 _1 r: B3 q% S8 q while 1=1 do
2 O: ^9 B/ Q9 a2 u9 q: d1 C begin& H( q( ~( C; m; G/ I6 e0 d0 Y
wait for 90 min& G9 I2 w; u0 ^" G" S7 O" O9 b
take down R_mA& E/ l k* X9 d4 `- M+ Z) X8 n
wait for 5 min
: R" ~1 R7 K9 G" G bring up R_mA
4 c% {, \3 _9 [1 @3 O h! c" ~2 g end( v0 v8 o5 o2 l( B1 s1 g) `
end5 X: p3 f+ f+ j ^+ Y. v
* Q6 C1 }* c% h+ V
begin P_mB_clean arriving
" Q- L( n- x g8 L while 1=1 do
, L. [( ?& k" A0 N- Y begin, X) b$ w* k- p" X8 \8 u
wait for 90 min
4 z' J, Q l( B! B* K. |! _/ F take down R_mB4 s @; S- y$ ^7 ?2 m
wait for 5 min
9 J% c$ t" ]) a6 r: W6 K8 c0 J bring up R_mB
( F: u, [8 T! d$ { end5 L7 X% q- \, e& Q) u
end; S$ H% {. J4 e
/ G0 `& l/ c$ `
begin P_mC_clean arriving B9 f D4 }% V$ h) }+ _# K4 T
while 1=1 do. s9 {. L8 q$ @5 Z
begin
' p [& m( V: i: _9 O wait for 90 min
3 C2 B, o( Q1 x) e/ @9 m. A; I take down R_mC5 s# \- B7 X: g8 x
wait for 10 min
0 {& r ]& K: v8 ?) v/ s1 c bring up R_mC6 i, N R) P" A; ^4 K9 e7 @! q+ L' r
end
" ]# d. M! N1 A. ~end! l6 T+ h3 F$ i9 {7 R7 G0 T$ ^
----------------------------------------
3 h6 p$ V r8 p( \- _
5 L- ?! `% x. u$ PExercise 5.9
! [+ o# y* w, m% K' k# \# I$ `
6 f! @9 n1 v' D+ x+ z' i7 |) m/ w5 c3 O: j8 d! {# ^
Create a new model to simulate the following system:* f% ~$ P+ N5 Q Y' S
Loads are created with an interarrival time that is exponentially
: R" q$ s! g- k& ^0 X8 R+ }distributed with a mean of 20 minutes. Loads wait in an infinite-; m, U/ C" y3 M) `6 G
capacity queue to be processed by one of three single-capacity, * S, H9 Z/ b5 q1 j9 m) T6 S
arrayed machines. Each machine has its own single-capacity queue ) K' V% Q- Y" Q) G% s
where loads are processed. Waiting loads move into one of the three 1 V; Z( ^' W4 L9 x( s! n
queues in round-robin order. Each machine has a normally
5 H$ K' k( m3 l$ x$ P( y- h% udistributed processing time with a mean of 48 minutes and a standard
3 H. j U3 Z* j* `$ [: gdeviation of 5 minutes.
; n, T$ `% ~7 X2 f/ O- ]& AThe three machines were purchased at different times and have
" s3 y" | d: B/ }0 a( I. Ldifferent failure rates. The failure and repair times are exponentially 8 U5 O/ p2 ?6 Q0 _( s6 p8 u
distributed with means as shown in the following table:
/ U9 V/ ]. I( i8 v4 T5 DNote The solution for this assignment is required to complete
, d+ e: K! x4 ]8 l0 L# r, Z7 jexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
4 b) ]" D5 `. Lyour model.
2 g6 R: D5 _* ~1 v/ b \- Y" J+ ~, t* z& H0 Y: D5 e* O% j8 w
MachineMean time to failMean time to repair: |# r! n/ T$ i8 W" p) L0 Y7 l1 v6 ?. J
A110 minutes 5 minutes
- M; q$ C/ i% z) K2 S* CB 170 minutes 10 minutes
( n, t% y6 o0 z* Z2 [+ l& iC230 minutes 10 minutes
* [9 i) ~: f0 x: v5 _
% s5 M2 d, r# l- U" F zThe machines also must be cleaned according to the following : H( d% g( P% N B5 I# u7 V
schedule. All times are constant: ; G# R9 R/ o2 {
! T6 g' k/ z" b* B- w9 o' X
MachineTime between cleanings Time to clean
# c# B8 C, }; _, ]: x" Y" l8 ]0 DA90 minutes 5 minutes, M+ W6 ^- n' r. k z
B 90 minutes 5 minutes
6 }9 w9 R8 E8 ~% d! H/ f4 m+ SC90 minutes 10 minutes
+ ]* Z2 b6 j9 a, N0 H z. O' S {9 o E& Q
Place the graphics for the queues and the resources.
, V7 Y- I* {* \! H' K! wRun the simulation for 100 days.4 h3 j8 g/ Y3 P- J# B o3 b; g! _
Define all failure and cleaning times using logic (rather than resource 0 I. O. g* I: w( \# h8 l
cycles). Answer the following questions:) i4 H E5 U& q# m
a.What was the average number of loads in the waiting queue?
W0 ^. `0 b( hb.What were the current and average number of loads in Space?
# O0 o9 L3 [3 g: W. K0 {/ ?How do you explain these values?
9 C4 A; v: k# v3 {3 w0 G- X/ _7 t4 H |