本帖最后由 GJM 于 2009-12-5 21:43 编辑
$ `1 F$ v. X7 u$ d+ G
+ f1 d6 G) y9 `; y. p底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
- v2 I/ y' N$ K1 o
: \3 Y v8 I- s% P! T5 E7 v, L不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
$ [- Y; a0 k0 { X
5 A9 y9 @9 q3 Y* ]' t, R- Z3 a--------------------------------------------
- {2 G; w# i) g) Q7 x% N( m$ Ubegin P_something arriving5 |% {: c- x( R' U, r; @
move into Q_wait
" {+ }. ^6 q; ~9 m move into nextof(Q_mA,Q_mB,Q_mC)
% w* C+ [6 z& J. R use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
" t: T/ v/ c3 K+ F, G( M send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean); W8 @2 N# Y# ] b2 J
send to die
, X: J+ x8 j2 f; w, M& b4 Bend
B8 S* `" s/ _* P: o1 E
- N) k2 `/ V* S9 ~begin P_mA_down arriving
3 _% O; B+ ~* M' u. J while 1=1 do 2 n) C' _2 f( Y* T0 V
begin
2 b% p+ o! Z. u; ^6 O wait for e 110 min$ a5 `9 y6 L* u$ u( w [" D
take down R_mA G6 @. ^! s3 _ t6 L
wait for e 5 min
* E9 S: m* _7 q4 o6 ^: N bring up R_mA
- s" y: I% k) f; C end+ g V8 c% L! q$ B7 R$ |
end
O# e d, G6 n4 F3 U
+ I, w7 l# X/ F$ b5 f& a, I" L) |begin P_mB_down arriving
5 o0 Y0 ^) U+ D# [/ \ while 1=1 do4 b, T9 w1 o7 q9 w
begin3 {7 |4 H+ C+ w( h* y) {
wait for e 170 min, ]7 i4 b$ |; q" e* E# a
take down R_mB
. q. _" F/ Y: Z* d, I% K wait for e 10 min
8 i4 q' m: j6 F) n) W9 V bring up R_mB; y0 a0 O9 V. O( B
end1 x+ X4 L7 ~& D9 H! j! a' q
end
a5 |, `: w. a$ T) k7 X
, n1 e, o$ K2 W! |5 |5 v7 E0 P6 zbegin P_mC_down arriving
2 @, Z- c* s: q while 1=1 do
, M4 O! T5 H$ F2 \& J' O" ~ begin) _' C8 w, ?9 b6 ]+ R9 k) V
wait for e 230 min/ q- T$ H8 e9 i' n8 j
take down R_mC$ {% i5 W# _9 A" M
wait for e 10 min
* I# W$ O' K3 @+ |, m bring up R_mC) s9 \& G+ h+ E; @( f
end* A: b( r7 R8 T1 a
end0 s. e* Q1 l! c( @% K: N
4 }. t5 U6 ^9 z2 m& |0 J! zbegin P_mA_clean arriving
7 ~) {3 f9 q4 T; X0 g, b: _ while 1=1 do
* W$ o6 M+ ]% u& w9 z& h begin
! [+ k+ x8 g$ a: { wait for 90 min0 O' `2 I' K; A+ [% x
take down R_mA
0 D9 M# ?& Z$ k2 E ` wait for 5 min
* O. M X; w; G, U0 ]2 C) t3 l bring up R_mA
: A9 G7 E5 s7 V4 V9 u0 ? end' s$ Q3 H/ [0 l* d) S2 n3 A
end
# {+ G% ]. U. o6 c& u S/ h ( ~, V) U% k/ Y; F
begin P_mB_clean arriving/ Q3 F- c' }! }/ W
while 1=1 do; f# G; Z* Z- }6 r
begin; O J( ]: M7 @3 b. w
wait for 90 min
& f1 B0 s5 H" A2 j+ P. p. C take down R_mB
, @. }: m- q3 [, p0 O d2 P8 o wait for 5 min& |6 o6 C8 N$ z* ~4 V
bring up R_mB
6 [& n: R/ ~4 r) V% F8 ? end( F0 G9 M5 ^/ H, E0 Z
end; {8 ?. G* [( t" X8 x; V: s
5 a1 M$ a7 c( I+ [. Q, i7 g
begin P_mC_clean arriving* l# t) N" J- `4 U: f$ E2 a' d
while 1=1 do
" ^: t6 r+ E1 z( k begin7 o$ u# L8 y0 C0 ~ P; X
wait for 90 min. T& o; x7 o- B( Y' n# k
take down R_mC, j% P$ S& Q2 X! c
wait for 10 min
p, ]7 A8 j" [/ s# j bring up R_mC5 N+ t; v! J2 _4 c' v1 i. Z4 I
end
8 M7 Z; X. M3 n4 ]% Uend
/ S5 b6 v5 y2 D----------------------------------------
* c ~2 r* X. J : U1 T) d7 ? E5 Z7 ^# U
Exercise 5.9
# Z$ C9 I4 T" K, P! H, y/ a& K; _/ d
9 U, {9 g8 C, f# y! tCreate a new model to simulate the following system:
5 X4 }! y. @5 Q0 ?' JLoads are created with an interarrival time that is exponentially
, Z* a/ Z4 `3 E7 _4 t0 Pdistributed with a mean of 20 minutes. Loads wait in an infinite-
+ Z- j* p6 }5 x: g q: kcapacity queue to be processed by one of three single-capacity, 6 W' b- H; ]) y7 k
arrayed machines. Each machine has its own single-capacity queue
3 Q0 v* z; m+ T! R# Swhere loads are processed. Waiting loads move into one of the three
3 e( M# }8 g) C; |8 z" ]queues in round-robin order. Each machine has a normally * L9 l. p6 |5 F# _2 T
distributed processing time with a mean of 48 minutes and a standard
c3 F: a4 A& Z$ D! G3 Q: L. Rdeviation of 5 minutes.! Z/ D1 B! s& {! y- I
The three machines were purchased at different times and have ( I, _1 Z& ^! b& V+ [8 p3 b9 u
different failure rates. The failure and repair times are exponentially 5 Q3 p+ i2 v! x0 C, T+ w$ T0 B
distributed with means as shown in the following table:
. c7 O8 T" A0 |6 o: y9 KNote The solution for this assignment is required to complete ! W! A7 _/ u) q6 ^2 w
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
% p+ m/ q; R6 U1 k) uyour model.
% l+ l0 w2 u+ \% M1 [. s; [" U- T' y b- j
MachineMean time to failMean time to repair
" w! l0 k( [: ]5 }! ]A110 minutes 5 minutes s( n, V/ Z0 @9 d
B 170 minutes 10 minutes
: b2 ]. d. e9 a! bC230 minutes 10 minutes& T/ ~" I" F1 v- f
; A1 j% |4 \' G! M! M3 _' h A
The machines also must be cleaned according to the following F: q+ r \2 m( e u( v
schedule. All times are constant: 0 W0 |$ P2 G5 d. p( Y. d
- \; k; l$ U& r# y: @5 CMachineTime between cleanings Time to clean
3 o- z; C* w* B4 P+ ^7 u* [( h# nA90 minutes 5 minutes
5 y! F9 d7 g: O( LB 90 minutes 5 minutes
& P6 \9 o3 V- I yC90 minutes 10 minutes
7 ~) Z) p; ^: R$ s: `& s+ D# u! E& ~4 @/ l
Place the graphics for the queues and the resources.
1 o' E0 k( @1 q, a; E4 A2 L3 k# ]- iRun the simulation for 100 days.
% \3 a6 ^/ e6 o: R5 B) PDefine all failure and cleaning times using logic (rather than resource , D% h( o, y- p4 s8 G
cycles). Answer the following questions:* n9 ? i' p3 T) [: S+ h$ p
a.What was the average number of loads in the waiting queue?6 }4 w' @3 n4 Y$ V U+ A
b.What were the current and average number of loads in Space? - y& }/ }$ O. d- J( f" ?
How do you explain these values?
9 Y* T9 E( c2 |7 b8 R |