本帖最后由 GJM 于 2009-12-5 21:43 编辑
+ [& l0 @: b, b; P0 Z0 G4 d, ^+ V8 _+ R6 v
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去4 Q- C' n! F' U, \3 X
# ?+ B( w. o0 U
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
6 m+ S9 i$ m) C5 i( E, I9 V$ U$ ^: W( Q% a0 z& J% g
--------------------------------------------$ G- @' {, }& l
begin P_something arriving
" `& v1 d4 T; x- v# j7 f& E move into Q_wait% W% e5 W, H0 F" i. ~
move into nextof(Q_mA,Q_mB,Q_mC)
* r/ v0 j7 l3 V- U use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min H2 @* }# b+ s4 v+ e( x
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
0 c! K8 v+ c1 M send to die/ q& x- p4 t8 P9 c
end% ?/ W% P$ H4 N2 M1 N
- [: A' n9 s; O5 @; w. ]( pbegin P_mA_down arriving
9 E. O9 m" A3 p2 j5 s while 1=1 do : m6 f. ~/ d$ _ A
begin, m% Y0 ^& x, d0 h! h- G
wait for e 110 min: G! s v6 m; \
take down R_mA
9 ?4 q( [1 Z& D% i wait for e 5 min8 L J, j& _8 F# F6 e
bring up R_mA
1 Z$ j8 R" y* v- Z) w( E end
+ D- h$ z- {/ @; Wend
: y: K& [/ N$ H
; p' [+ |$ K3 |begin P_mB_down arriving8 J" A! }/ |. U1 J
while 1=1 do- F5 p$ f4 t8 w. H! z6 Z
begin' }$ |0 R3 m! @& ]0 l1 v
wait for e 170 min) I& i l5 L7 r
take down R_mB1 X5 S( n Q0 T8 D- G, S3 O
wait for e 10 min1 T$ |9 p- [, y2 d; C+ L
bring up R_mB* U2 }2 z7 l7 T9 O* @; H
end
8 h" c! c/ ~* w& Xend4 e* @, a; k7 D5 t. l; v, ?
1 N& z% M1 ?. F2 l' ]* a$ }2 qbegin P_mC_down arriving, Y' N. }4 k' n6 J: q
while 1=1 do
% p7 u: j' b# L begin7 ]/ ?4 C. g% ?/ w$ k C
wait for e 230 min
% R9 X$ h0 `& @) ?- c take down R_mC5 i4 n5 P8 c/ _3 w, n
wait for e 10 min
' {2 ]3 i1 ]+ }% s7 n bring up R_mC
" [% ?; L' J& t8 @5 e Q8 V& V end; I' W) d8 c" K8 L n b6 y
end
/ @* I" |: Z ?( m. a' C) T/ D9 T
$ f3 L# f+ R0 D6 k& O$ O" qbegin P_mA_clean arriving
! |# u0 T2 N! G2 x! ` while 1=1 do
, z4 B$ v X( y2 y begin
0 a) ^& @' Y U$ Z wait for 90 min
B) Z% W8 p8 @9 p8 b take down R_mA+ D, i7 |8 }0 |; \% s& W& C+ I) K- G
wait for 5 min
/ m0 I( B4 v" j$ J/ n2 P0 B bring up R_mA* x" B* @- B7 f& s. l- B' v- C0 |3 j
end
; f7 n4 q% b1 _1 G& Z6 A3 w; L# _end2 A( ^; q- }" b4 x3 d
3 b% f( ~+ W* |1 C( |! sbegin P_mB_clean arriving! R' X: z5 A) A2 ^0 U- q3 h
while 1=1 do% n z9 K7 e2 M3 `) {( A
begin
/ C! q3 g) a. W0 j+ Z9 V. W wait for 90 min3 @" N8 B+ N$ J7 @( k# T& L. v
take down R_mB8 C' {) U9 h/ S
wait for 5 min2 E+ x% H4 `, t5 A* C3 _ y- w
bring up R_mB$ `2 t/ K4 d7 {+ ^8 M
end
# F* Y! s$ O% W3 N6 k& aend2 F* z0 E8 L! H( B
9 ^) z7 Z# ?2 j( K( U" N
begin P_mC_clean arriving1 Y) I5 `# u% X6 E* }
while 1=1 do2 V, o5 b2 z. d J% u8 \3 e
begin: l4 a7 f, ?* V+ H+ {. Z6 u0 g: G
wait for 90 min( S7 \: i8 m, t1 W& C1 p5 N; Y4 U
take down R_mC C4 |0 [* s/ W8 @5 {) z
wait for 10 min& l1 s! t1 y3 c/ J2 V
bring up R_mC
+ p+ S v6 w# x6 l( D# @( T2 Z end
/ }) |0 a9 J2 Fend3 w# s2 W7 O6 N1 u, q L
----------------------------------------& l6 M0 n. x' M2 ]; B; x
& e: }. Q; y; [, T9 C, X' rExercise 5.9& q! O: d6 T& C. U. P$ k* G
) q; g- _# I' g2 z, J( v2 \
$ ]# ]/ k1 b$ Q' S, R
Create a new model to simulate the following system:$ h: [' W' ^ s" g8 Q
Loads are created with an interarrival time that is exponentially : d! p/ _1 p# ?! m
distributed with a mean of 20 minutes. Loads wait in an infinite-
/ o0 T3 Q6 |! V: t: q) I& }7 M. pcapacity queue to be processed by one of three single-capacity, 4 w- B; h9 A1 I: K
arrayed machines. Each machine has its own single-capacity queue
( a1 b* l+ R. l1 n' }! a2 Xwhere loads are processed. Waiting loads move into one of the three + }4 r+ f" a% |) T$ t+ Q' B( N
queues in round-robin order. Each machine has a normally - Z0 H6 e* M. r; L3 E( D
distributed processing time with a mean of 48 minutes and a standard i6 Y" H; t5 A8 {) N1 X
deviation of 5 minutes.
7 B- }+ |" J" O7 d1 Y) CThe three machines were purchased at different times and have
2 @ ~- C* l1 d. p$ ^& Vdifferent failure rates. The failure and repair times are exponentially
2 A, s- i: y( ydistributed with means as shown in the following table: + \- k7 o* P& h
Note The solution for this assignment is required to complete
a- ~0 I% M2 `* C5 ~& q) Vexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 2 v- d2 ?" ?5 J9 m3 p1 ^
your model.
8 O5 H! ^" v7 H# R* d9 n7 C
$ o& H/ k5 x9 n' O5 HMachineMean time to failMean time to repair. Q6 x; ]$ d- y+ l9 b3 v/ p
A110 minutes 5 minutes- S& }! P B6 e6 r* E" t
B 170 minutes 10 minutes
9 [+ ?# [6 F" F# DC230 minutes 10 minutes
$ x2 [# m* l. I# N: e8 R' D' h z7 `- o+ H% y
The machines also must be cleaned according to the following
; c9 p( ^" C/ i+ O# j5 h4 B# [schedule. All times are constant:
! }9 {% d$ e; L5 t8 a. @9 _# Z4 E; H9 n8 x0 }) p
MachineTime between cleanings Time to clean0 I8 `9 k, }& y% j% I
A90 minutes 5 minutes
' z8 W/ p& V- I. J; ]) E) nB 90 minutes 5 minutes, B( }3 O0 h# f" U p
C90 minutes 10 minutes
/ `) `1 i& t5 N& _ \9 l! E8 b, v+ F0 ~2 j8 i* A5 Y
Place the graphics for the queues and the resources.
4 J& p7 P% C' @* eRun the simulation for 100 days.) ]3 K9 J0 d7 Y6 F9 O2 K
Define all failure and cleaning times using logic (rather than resource 6 ?5 f& H) s; V
cycles). Answer the following questions:2 o" O5 f& y8 E, k9 T0 F ]; H: m" j
a.What was the average number of loads in the waiting queue?
# g t6 b6 M, k& [/ W8 v, f4 K7 s# db.What were the current and average number of loads in Space? & U! r$ N% d* @0 O: _. l# s0 Z
How do you explain these values? % R, x/ S1 I6 Z
|