本帖最后由 GJM 于 2009-12-5 21:43 编辑 6 g# r8 B0 M5 s8 U) `
/ {) M( r: ~; b7 `底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
: F( F/ p' ]2 G
; y* [$ i4 B$ l* Z/ U/ W1 F6 K不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
$ }" S2 y0 ]# G" `3 s9 O
2 a! n, n d& R$ i6 x- h3 D) e" }--------------------------------------------/ v8 k8 R0 E( ~7 H
begin P_something arriving! i( O! {1 q* B/ U: b% x
move into Q_wait6 f- n5 u6 w5 O: ~( E6 Y
move into nextof(Q_mA,Q_mB,Q_mC)/ ~7 w8 S; F9 }7 L
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min7 o5 j* a4 J7 ]" {
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
$ _# u& z3 P; M) Q/ E send to die, w- v% u! d0 V1 F
end4 N2 Z2 `9 W$ ~1 Q
+ y4 ] H J7 e0 s7 K* G0 O% I3 Nbegin P_mA_down arriving
$ l6 R3 q) o% ~ while 1=1 do & B2 ]- y1 j% P# T
begin
& |& I& Z# R* r0 Z7 Z$ l wait for e 110 min+ G- T9 l" t2 I8 R0 k6 g1 f: z4 B
take down R_mA
& S: c8 j& a5 I [3 j! z! ] wait for e 5 min# K* _+ X) X! s! @
bring up R_mA, }6 Y( {& f! q: J
end
# w8 Q6 T) a5 s- Z1 @end
" P" R+ l0 k3 o6 [) F% K) h d5 i4 l
3 r; [ O, T5 {, `$ z4 @, W0 Ibegin P_mB_down arriving1 P0 r, m3 r0 b- l
while 1=1 do, o" ]- D7 C4 q m' I* n/ k, r3 }
begin
7 _( g, r) [& {, p/ ~( ^ wait for e 170 min
% u7 E: g, N8 W# |$ C( P* q take down R_mB
* Q8 y& F5 {7 U2 U9 n! V7 D wait for e 10 min
! I3 q5 N0 P% W0 R6 Q% `% s+ | bring up R_mB
- e! A7 U' q# q* W4 n end) s4 q n4 H0 u3 K
end
$ f1 k3 j! {2 e/ Z6 P% ~8 M: Q' Q3 E
2 {$ J X. Y9 e% ]# d; A% Rbegin P_mC_down arriving
, J3 @+ i3 y8 Y0 \8 a; ?+ ] while 1=1 do
* R, x& o+ k( h: Q6 N6 V7 O begin. U. i8 p; d2 K4 {$ n% R
wait for e 230 min# P- ^; Y- i( ^7 B/ e
take down R_mC
' R+ a7 J9 [' u' B4 ?4 m+ v/ e/ G wait for e 10 min
3 B( ?5 u& v& x6 U+ o+ J) D& x bring up R_mC4 h" J: |) }7 N- |& m: Y2 T
end- K" N" h2 _9 t C
end
: R3 D; N" y! W: b! T9 _ / `" Z6 }0 M( x5 t6 z
begin P_mA_clean arriving
+ K2 _# D0 a/ s+ _5 b5 i while 1=1 do
$ E. r3 } x4 Q* { begin) l6 A7 C! p* G1 d6 i. i
wait for 90 min2 s3 X l* G5 o/ _. M' n
take down R_mA
/ U& K2 @ R1 j' Y* i" \; p wait for 5 min
C0 w, P5 @+ |+ ]! G! l bring up R_mA6 m8 H: @; [: N' @. r2 C/ n6 Y
end, z! T2 h# e, m4 |
end: m: a B; |5 U
* U6 t$ b9 |3 J% _4 R+ dbegin P_mB_clean arriving3 o, P2 C) f$ _# E
while 1=1 do5 P' ]" j; P0 V7 x/ W7 U' v0 x6 n
begin
! P8 G8 ^' q8 C5 P wait for 90 min
; W' p9 N( X: d* I* t3 a take down R_mB
( R! g: H4 }+ a% ` wait for 5 min
! q, I$ `( ?" ^' k( ~* N bring up R_mB
, X& q" B, g8 d# | end& K* S0 `) v: t) y9 Q4 l
end! q u6 s; @2 B R& J0 w
0 p; x2 m# T9 L! Z- m2 Lbegin P_mC_clean arriving6 I; w C& u0 v
while 1=1 do
4 q( I. Z) c# l9 N' ^2 s begin
3 U; h1 K+ w- s1 b wait for 90 min
/ w0 S; H5 |; _- u take down R_mC' x. e3 i! ^: k1 O4 d' ]$ i( W+ ?
wait for 10 min
/ s. d0 h$ N7 g1 Y4 b! f bring up R_mC
7 H3 V d5 c! G end
/ H* a1 ]+ i }8 Tend3 m& O2 ]" E D) g
----------------------------------------. L5 \/ @8 {3 Y) ?8 [
8 u7 E* I. U& g( A! e+ j0 n
Exercise 5.9
; l0 u y% p' u0 _- ^# m7 U/ F3 {7 K, b
! ]; M9 j& Y0 f7 LCreate a new model to simulate the following system:
2 g _! l8 F) \$ Z1 L- `Loads are created with an interarrival time that is exponentially ' o) {& Z9 s6 w: {/ Z+ i# Z
distributed with a mean of 20 minutes. Loads wait in an infinite-
& l: @ _# Y. K7 N1 Lcapacity queue to be processed by one of three single-capacity, 9 x6 z; c- q' A/ N1 M
arrayed machines. Each machine has its own single-capacity queue
7 N# _# ^- x% {5 g- kwhere loads are processed. Waiting loads move into one of the three
' z4 t1 g4 Z5 T3 p% zqueues in round-robin order. Each machine has a normally
- E, C8 H; s& ?8 s' H, H* M4 E) q% Q, Hdistributed processing time with a mean of 48 minutes and a standard x% y& A3 Q. v/ B* B, Y
deviation of 5 minutes.5 O8 N/ n, n! F) w" u) D. q
The three machines were purchased at different times and have
" d2 q v- d; y; j" Xdifferent failure rates. The failure and repair times are exponentially
3 B. H8 j) I) U; O6 adistributed with means as shown in the following table: " j1 a& T: N4 w \6 r/ \* R+ F' P
Note The solution for this assignment is required to complete / N; V+ i& C6 f3 @ Z7 i9 ~+ d
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
! N; i* I8 a% x% oyour model. 2 h/ M5 C' U' I) y7 a
; _# Q h+ _$ v3 `
MachineMean time to failMean time to repair
0 _$ a7 X9 L1 l5 S# cA110 minutes 5 minutes
# u- e0 W* i, g! X) ]B 170 minutes 10 minutes
4 T% c1 m2 V; q* O TC230 minutes 10 minutes
& Y. W2 o' B6 C q- U2 ^, y8 A
7 F3 o1 w5 H/ d1 J9 c+ q! FThe machines also must be cleaned according to the following
: }5 y9 A% e' C3 U. Z$ wschedule. All times are constant:
: i4 p6 k% H6 J' N& b0 e! |8 e8 W; h, e* t
MachineTime between cleanings Time to clean
0 `8 b* B+ j& F2 h# v5 u5 MA90 minutes 5 minutes' l3 p9 n0 r/ i5 h6 P* x
B 90 minutes 5 minutes$ R/ h* P) b1 y, F; B# b8 w; P* t
C90 minutes 10 minutes% }$ W0 ?6 O' \/ U. I; e
, X* f8 G6 A" S" |
Place the graphics for the queues and the resources. ! o. d; [* M; D; G$ M' d- r
Run the simulation for 100 days.
/ A- e; e5 n/ S5 H" ]& q* KDefine all failure and cleaning times using logic (rather than resource 7 [; U" t% S0 c* [8 x. z
cycles). Answer the following questions:* x. A+ M8 g+ h3 J
a.What was the average number of loads in the waiting queue?' B( @3 H' S i) t8 f8 e, [
b.What were the current and average number of loads in Space?
/ s2 [. r2 p% n O8 p0 oHow do you explain these values? 7 t* g1 s1 g7 b h5 \, M
|