本帖最后由 GJM 于 2009-12-5 21:43 编辑 ( `% _3 D: f5 ?$ u
2 v* r- |) H1 q5 f) j4 S
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去. |- T( ^- j7 r0 h; i
) K+ R3 z) [; ]; S6 o不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!+ ]$ t) r- y. Y! u1 u8 D# v/ }/ w
6 L& G! v/ j' g6 |--------------------------------------------
8 r" \' i# M* cbegin P_something arriving
6 |, D2 V7 V+ u& _. v move into Q_wait. N2 x; W8 N1 ], {) s7 ~
move into nextof(Q_mA,Q_mB,Q_mC)
* L9 L4 Z6 X7 y; L' [ use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
. y' w- u0 G0 q. s$ n' F send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)8 J, s6 e- T. G% Z* k; o* v
send to die# i) r7 h( _( i
end
c/ W% E' z0 D/ l) S6 Q8 u6 i
! |8 K; V P4 D! W' Fbegin P_mA_down arriving
( |' R9 X! Y2 A; N) c# y& I F* Z4 J while 1=1 do / E: _; @5 i+ Z
begin
/ L: h: u5 q2 M, N wait for e 110 min) S. e* g3 Y. U7 e! R( Z
take down R_mA
' @1 H9 M D$ R% z. r' E) t( ~% i' G1 M" l wait for e 5 min8 Y% r' R% S" X1 C$ s) g# K, v2 G
bring up R_mA& u/ F3 M1 D' P+ u
end% a6 `* `2 C, U
end
% @' M9 K. L! n. I; p* D6 p
5 i3 v& j% r0 ]0 I3 jbegin P_mB_down arriving
. n8 B- \- \" b z5 S) E# i3 @ while 1=1 do
9 `! P" R3 o6 x8 K- g# {2 ^9 R begin7 y3 m# l8 h/ U9 O3 x' l
wait for e 170 min
+ W Z# n9 N0 }# M take down R_mB$ j- \8 _' F+ W, F l; U
wait for e 10 min; u1 ^7 ?, m) A8 G! ` h0 y
bring up R_mB
- Y/ a+ v0 i' h8 i& X end1 S! [% P1 m& i- C* w
end
/ E* M3 }" P; Q& f3 T
. D7 I0 f5 ?6 wbegin P_mC_down arriving5 r# w, P5 K8 g6 M+ }
while 1=1 do * W) \ l1 @7 S/ x
begin
& `4 R; l6 e- r# y+ ?3 } wait for e 230 min, c/ n M; u3 D, k! R; V: Q
take down R_mC2 J# y) u) F$ R; }* q( T8 n
wait for e 10 min8 ~8 `- K& x& }8 w6 k# P! c
bring up R_mC6 F" k) ]) h* f% ]
end
& Z) N6 L) {; J0 d, I, ~end
5 |% c m- ~3 Q7 O, A% u6 @. z
5 l% |( o/ z4 V9 U/ J. u/ Sbegin P_mA_clean arriving7 R, I- P3 j+ c+ U; H) S
while 1=1 do
7 L5 l4 M$ s: S7 u( S begin& k& p8 j7 r& [. x3 F8 A
wait for 90 min C+ S8 ]2 R# c& n
take down R_mA
5 l8 N0 G% ~: l( _ g) [ wait for 5 min" m3 d, p" b R) M
bring up R_mA
( r/ h2 `1 D0 o2 w end
i2 X0 C" Q" W, p* x6 qend/ k" w9 C5 }0 l
7 Q5 Z/ ?/ q/ T2 A/ d& H9 F% Ibegin P_mB_clean arriving
% \5 C; ^/ V! Q, O: G1 h while 1=1 do
& V) s+ K, N8 v2 r2 ~, v4 l; N begin
$ t3 B- `& `9 R9 N, j+ I4 m% {5 h wait for 90 min
T' t6 x6 r6 g$ N6 e/ Y7 D take down R_mB
/ _; N& v- R- |7 g9 g; ~) {1 ^7 a- W wait for 5 min: p* u7 s4 V: y1 K5 Y/ A% |
bring up R_mB! M% M4 i4 E4 }6 i
end) E. k% B# \9 [6 H+ o
end
2 ^' \& m5 r) I& ^0 V5 c8 e7 z : O) B: C; d3 K: c# ^2 G
begin P_mC_clean arriving6 U( z- D. C& Y) Z
while 1=1 do
: a- J3 T" @" V0 ~3 Y# W begin
3 {0 \; P a8 y- ` wait for 90 min
: B4 E' G+ C* V take down R_mC
: H6 M; I: `; n( ~: K$ t; P, X wait for 10 min. ?$ J1 a6 Q' V: ?
bring up R_mC. h/ U# Q5 ^; {+ x
end
8 m1 j1 j; C, [1 h) I I4 }1 O1 zend
: _+ o* j1 _) F/ w; \# p----------------------------------------, d% v/ w n4 d
5 t0 K- r6 H. {& D9 l" D0 n# [
Exercise 5.91 Y4 i1 S7 z+ k1 W
0 R6 q* Q& ?: ]5 i' ~
4 ^6 g3 m/ M- K1 |+ ZCreate a new model to simulate the following system:
* N" Q1 L: U( L9 I) PLoads are created with an interarrival time that is exponentially
C1 t' k7 c# @+ _ cdistributed with a mean of 20 minutes. Loads wait in an infinite-
) E5 n1 V: j: U- m. t2 Pcapacity queue to be processed by one of three single-capacity, % x y( ?# z( h5 y
arrayed machines. Each machine has its own single-capacity queue 7 n4 D) v- P+ q |6 H& g6 d
where loads are processed. Waiting loads move into one of the three p) K3 {- h$ [% g
queues in round-robin order. Each machine has a normally
' l/ {% T2 w( ]1 o, M$ ~# s; Fdistributed processing time with a mean of 48 minutes and a standard
( K* j& l: u: zdeviation of 5 minutes.
5 W+ E. x9 Q" `! E |7 TThe three machines were purchased at different times and have ' o0 ~" F2 P! H3 q5 w' `
different failure rates. The failure and repair times are exponentially - p2 X) B a% m7 F* s
distributed with means as shown in the following table: 4 d2 X0 x5 j- e* \4 U7 a# ^6 V
Note The solution for this assignment is required to complete - g# H6 H9 A, O8 ~& |
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
9 k2 W( t2 I* }$ A+ ~your model.
# D! a9 E% V& l2 V7 B+ Q! a& `
6 _! z2 s# b% ]' yMachineMean time to failMean time to repair
; V; \, W) s: \7 ?0 PA110 minutes 5 minutes+ E: n6 r" K7 Q. H
B 170 minutes 10 minutes- v8 l+ I$ a( _" B7 Q
C230 minutes 10 minutes$ e, I: y9 a' N1 P5 q
& b N1 z1 q5 P# K( |( EThe machines also must be cleaned according to the following 2 P4 {0 o0 Q) V' |' C) _- I- N& `
schedule. All times are constant: : |4 |( B& t- ^+ j
8 f& W& y. G3 B! w
MachineTime between cleanings Time to clean
" M% b. Q7 _" ]/ U" [A90 minutes 5 minutes5 ]5 O! {4 b2 @! v! J. u: K
B 90 minutes 5 minutes
# o+ R9 O5 N% g; M6 B7 [2 qC90 minutes 10 minutes
- D) l/ Q* k4 p# g7 C
+ a1 A1 H' a, N2 g! i) |Place the graphics for the queues and the resources.
' O l: h, }4 A$ p7 }5 U& ?Run the simulation for 100 days.
$ M5 D( R$ J1 ]Define all failure and cleaning times using logic (rather than resource
5 G+ ]) t0 Q* ]6 y+ P! Gcycles). Answer the following questions:
3 K" ~/ y, `( X: I- c# M- B6 ta.What was the average number of loads in the waiting queue?
& U% ?$ i: I9 T( Y4 X3 h, L4 rb.What were the current and average number of loads in Space?
" ~) Y" { O# K6 DHow do you explain these values?
* p/ ?3 Q) O9 f* |9 F7 r |