本帖最后由 GJM 于 2009-12-5 21:43 编辑 : o5 u3 h5 }# r
* c! B# N4 l0 r1 X
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
2 E; r( }- M, q" I5 y
1 f, v4 @- ]* h$ m; y# ] J不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
- J$ h! y7 O9 s; H
' L+ s1 |+ P# p% b' m--------------------------------------------! b4 Y1 F" u$ f& H
begin P_something arriving
8 E: q' C, |+ L move into Q_wait2 |( F- l; Y& }7 I# p7 P# j
move into nextof(Q_mA,Q_mB,Q_mC)
- A7 s; n$ g9 N2 U; o: N, U8 d$ o" i use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
5 J- k! k( [9 }4 p- ~ E7 i send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean). T; _8 n" ]$ ~4 G: Q* Y
send to die5 Z/ g+ [% E3 D. ]9 u( P; y3 y0 e
end
" L! K; k/ i- \1 e6 J( j' L
8 m2 g) ]9 Z O6 l5 Q' _begin P_mA_down arriving
: s( ^& V* ~$ U( N1 y# _; o& } while 1=1 do 2 i1 r. C: _7 z/ n5 P3 f3 A
begin+ m/ b7 i3 c# `% ]
wait for e 110 min" b, F( i) c, w1 U( N
take down R_mA
1 _# N% W) k9 E9 S wait for e 5 min
6 Z; H: @6 k" n X1 a, u/ z bring up R_mA x! y6 l$ g- A9 M, `& `7 `
end( j* t0 C' _2 i5 p* G
end
* ?% x X+ K9 i" ~- _: @8 z
2 | L; q1 y! P3 C$ g3 a9 _5 Wbegin P_mB_down arriving
|; |$ s) N6 S5 d# { while 1=1 do
: H9 [' n: [; r/ A begin, d; L2 F) A) e) T. R3 v# C
wait for e 170 min
1 `) B( K8 ?$ z$ G" t4 O take down R_mB
( M5 ]( J8 K6 K6 `1 L& s p- D wait for e 10 min1 Z/ v/ P5 B6 E2 U9 j. l
bring up R_mB
* d& ~ B4 O( D$ V( ^ D+ b end
6 q+ f* D" G( f( n! Jend1 e% K, ]7 J7 B U
) o, n& G( C; s4 D& ^8 ^; Zbegin P_mC_down arriving
: F) S% p h/ P9 I while 1=1 do : z* N @2 L3 e3 \; K: Z
begin
+ i& }. @& U2 Q6 t wait for e 230 min- k2 x/ M0 z+ _
take down R_mC
0 A7 _$ e9 v' E1 Y" t4 F wait for e 10 min0 a5 Z' ~0 Q$ D6 c+ }( Q7 \
bring up R_mC: U: Q$ j( u2 ~& B: i
end
4 g" f7 q# f$ h, }5 {' Xend6 l$ f5 U5 b/ n) \
6 M) V3 G* v$ q! |
begin P_mA_clean arriving% F- Y# P+ k3 i! m* h' a
while 1=1 do& [3 s2 s' `0 F6 V' S) k# L
begin
3 i" J- B: u' ^! b9 ^: i' H wait for 90 min
d6 i! c% U0 b( H: |# ^, ^ take down R_mA1 Z- ?9 f* j) L
wait for 5 min( `$ ]5 ]; v& S4 c8 Q- R
bring up R_mA
c$ ~% O% `9 O5 C% v0 F end- | V! I/ E" F& v, p
end
* {' n+ @0 J2 x/ ]) L
* T# ~9 F9 C( Z; abegin P_mB_clean arriving
- B7 W: a8 R7 g. o, H( a while 1=1 do
5 L% }) M9 V" p% T2 W6 z begin9 O# R* R; d! `6 o$ ?
wait for 90 min8 x+ F2 z" d% ~. J4 C8 N: i
take down R_mB
; v, t0 |6 w0 K ` wait for 5 min' Q7 z% y- g* B1 V2 m6 A) F" q. q
bring up R_mB
/ Q1 j' [( n+ q end
F$ y# O/ t4 e, E& C) g+ Xend+ N" @ @# e/ `1 m
( h* x5 w6 W8 J" obegin P_mC_clean arriving! u. |6 ]) }; A7 _
while 1=1 do; ^) o) m' C8 [6 W" G
begin/ a2 z1 {5 V/ A4 {% A
wait for 90 min
) w8 m$ n- S: l+ e1 S take down R_mC
, k' ^( j# i; r# j4 S wait for 10 min
( l1 S! ?7 W4 W9 ]6 J4 i$ F bring up R_mC: H$ @: B. z4 t3 H5 ^
end
* L/ |, F7 q, Z1 Z, cend' @7 K6 w, d( K" M
----------------------------------------
6 ?" U$ P- \8 _2 p
% F2 T! H1 _: B5 B- sExercise 5.95 g* @$ y6 R4 A" M; [: a
2 O3 N1 L- |' r' {
+ g2 y8 x' I$ a* O3 f- f5 k. D/ LCreate a new model to simulate the following system:
. |! a3 a. C2 d. _( }# b: KLoads are created with an interarrival time that is exponentially
# y0 z* y) P. U R" l9 Ydistributed with a mean of 20 minutes. Loads wait in an infinite-8 P* a1 f! i. f4 u3 m! r1 C4 f+ L( h
capacity queue to be processed by one of three single-capacity, $ S3 b, ^' w g
arrayed machines. Each machine has its own single-capacity queue * D+ B" \9 p6 Z/ J
where loads are processed. Waiting loads move into one of the three
$ l1 [% z4 m8 d0 ?+ _queues in round-robin order. Each machine has a normally
0 b' `! {3 q. }" V T9 k6 ~3 W4 \distributed processing time with a mean of 48 minutes and a standard
# A$ V% I5 _0 u& }9 Kdeviation of 5 minutes.- C: _' g- k+ z6 a9 v
The three machines were purchased at different times and have ) B: g0 b' ~0 U3 @
different failure rates. The failure and repair times are exponentially 0 [" G* y; _9 J# w. b
distributed with means as shown in the following table: * x. j& ~. ^2 n% n0 F6 Y: t4 @7 P
Note The solution for this assignment is required to complete
5 o' R: l6 D( hexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
0 j+ A( E3 ]" f2 U" K3 @your model. ; a2 ]4 F& C J% M
c: L, G; F0 c6 S9 i% f
MachineMean time to failMean time to repair
% ?! W" K0 T# I0 C' c0 }+ C' F6 aA110 minutes 5 minutes. X, H/ \5 c) [
B 170 minutes 10 minutes' d. p( F, Y: a+ ^" U
C230 minutes 10 minutes, W! }4 G- u6 Q9 X
1 _5 Z, x+ `& G4 `7 `8 {) H1 NThe machines also must be cleaned according to the following 1 _: X, F, E, d' N+ {
schedule. All times are constant: : J$ d: j F6 b) M
2 p9 X C, n+ h1 X& yMachineTime between cleanings Time to clean
# s/ M. J3 U" r& C6 X/ w0 C/ TA90 minutes 5 minutes
) h) j u; Y1 b k, \5 P. `B 90 minutes 5 minutes8 g, l$ a: Q( r
C90 minutes 10 minutes* C5 B( m) D4 E6 T# ], A
; H9 E0 m5 b* h2 d) j- ^0 h
Place the graphics for the queues and the resources.
8 J$ a) V) G W6 S# u& {+ nRun the simulation for 100 days.+ Y- F! u6 q0 f# p) S0 o
Define all failure and cleaning times using logic (rather than resource
) O% K4 W, T: q8 m5 Fcycles). Answer the following questions:5 |8 X) [' V/ o3 c
a.What was the average number of loads in the waiting queue?
: t- x1 H* |+ L* a" C1 \4 N8 jb.What were the current and average number of loads in Space? + w4 B/ T$ o+ i* U# [
How do you explain these values? 8 r6 {3 s& z3 L7 O- A9 I. |
|