本帖最后由 GJM 于 2009-12-5 21:43 编辑
+ c- x% D. N8 c+ B- Q6 p; Q, U6 v. D' _9 v5 I: l( v3 C
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去( M9 u( p6 K/ A7 ]% `
4 v) q2 {2 p, O
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!7 f1 d9 R- L. O, L& s1 R
5 o: T* ^& n5 t, `0 X6 b' |6 q
--------------------------------------------
# y2 \9 Q5 h% Z. J1 |' d2 sbegin P_something arriving( s- e# J0 ?6 |2 d( E( w
move into Q_wait
0 x' U% X/ e. W move into nextof(Q_mA,Q_mB,Q_mC)
6 ~, ^4 `& S/ S% v& i use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min& F& D0 ]) H4 s
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean), }, s7 \' Z# W |
send to die, j: c! v: V2 w
end! r5 C" x' X0 ^! o+ t6 o
, f. x. d; {1 M/ d
begin P_mA_down arriving
+ e: b1 w1 [9 z R3 v* w4 R while 1=1 do
+ W% j* U6 p3 P N7 R begin
% O, |! ~! T8 h% r# I6 D wait for e 110 min7 [: @( h. X% o1 j1 v0 L- W
take down R_mA6 Y: P! Q- \9 g* G2 M4 u3 O/ [
wait for e 5 min
- x7 Z' ^! U" K, D3 x bring up R_mA- ^+ y2 M- D& m9 m1 e6 S# N/ |
end
: h" r k# B4 G5 eend
0 S( d$ Q4 w2 B5 y2 m. V# Q + u: B0 F! D" [/ n* `8 T
begin P_mB_down arriving1 Y B: E+ d+ V+ l. _! E+ {- u; Q
while 1=1 do4 o9 s0 ?# K, o" \, X) j
begin5 p M+ t5 i. E* w2 ~5 Y
wait for e 170 min8 H: p! y/ C+ w8 v
take down R_mB* O, @8 m9 ^- P! m6 B" Q
wait for e 10 min4 g% E& Q0 Q0 ^4 I0 z+ i6 O! X
bring up R_mB
# V8 d! e7 Z9 b( c7 { end; v9 A# q% j' d( O/ C* f' i
end; b. I! t9 A9 v, g
0 @5 @, Z2 l8 n2 p$ D4 v3 Cbegin P_mC_down arriving
. D4 q) _* w2 W while 1=1 do - `! _4 V5 H$ w. F( J# F ~: f
begin% S; M9 q; ?! r! F& I& t/ K
wait for e 230 min
3 l- z5 b' Q5 [, `9 k take down R_mC
/ E9 R# N# U6 R4 F! i wait for e 10 min
! j. o5 o$ z O" V2 k& H+ u! O bring up R_mC8 M3 `8 X$ t$ \5 [2 K/ h2 e5 J
end
: B. t4 X* m% L/ [- B( G' Xend! p* C+ s1 a4 q8 j8 N$ t9 b
, I. y% B* G6 C. L
begin P_mA_clean arriving& Q. K2 O$ y! G& J3 ^
while 1=1 do: I# y! v# P0 i/ t% Z2 k" z4 d
begin
; B5 b( e7 M: u. n+ O! y' |7 W& @+ i. H wait for 90 min' v! z" s f$ t$ V
take down R_mA
% X7 Q5 H& f, s* d5 x8 X9 p- T A5 a wait for 5 min
, Y1 x! \2 M% A- G% i# N8 h bring up R_mA5 a' H' i( r( m$ @! ]
end
% z( z8 b$ F% Pend& P9 H3 I- ~: q R9 S
; ^* e1 r+ Q. b. q% Hbegin P_mB_clean arriving
" W3 A+ B' z. } while 1=1 do
/ t" y# N ~8 ]9 }3 j begin5 l4 c. l( m+ O7 F% }2 \7 D
wait for 90 min$ h z* X! x3 d( c3 D V4 w: W
take down R_mB* b4 ?# c, v" y! F, [2 J1 V* s
wait for 5 min9 l K) R% q0 f2 A9 S& O
bring up R_mB5 {' l- K" q( Z9 r7 i- n8 ]) p/ Y$ _
end
& j( M' l7 u& a% B5 y9 s. Tend
. A7 a5 Q# ^9 Z' E( [2 ~ 8 K4 O" s7 \/ T2 R+ ?, d+ p: R' N
begin P_mC_clean arriving
: Y& i; b3 T- P8 S while 1=1 do
' n& `! F3 M* D begin
5 F+ s( x' }* u% K# J3 R$ j. ]9 t wait for 90 min
- B; E/ ~% d# h5 ]- b take down R_mC$ `0 q% C; R& w# N! A E
wait for 10 min
( ]9 r8 E7 a! m& H+ z1 [ bring up R_mC" k1 e& w8 E8 e4 a3 ]
end
9 y! L" K4 d8 x5 \" X2 Mend! R+ R# T. v* m: I- C* y6 S! g% y
----------------------------------------
& X- c# y) h4 t! ^
# G7 j, z# ~6 Q. P* ~Exercise 5.9+ f$ `3 I% v* p4 y I- ^" {8 E1 k' ~
& ^% y! c7 u/ J$ Y. q4 A" ~6 }. e* E& {4 d5 j: {' N: L0 {8 V- o
Create a new model to simulate the following system: D9 @6 Q3 f6 a
Loads are created with an interarrival time that is exponentially , z8 p1 ~9 p( W% f/ D
distributed with a mean of 20 minutes. Loads wait in an infinite-
& X- B" I3 G* y5 t) k0 Mcapacity queue to be processed by one of three single-capacity, " @# t+ y5 N- s8 `# D U+ V, r+ d. |
arrayed machines. Each machine has its own single-capacity queue . Q8 O* T6 ]" j. _% p7 X6 o* H
where loads are processed. Waiting loads move into one of the three - ]6 Y; ~: o& |3 a
queues in round-robin order. Each machine has a normally
" ]- ^7 i6 r0 {; z# x& udistributed processing time with a mean of 48 minutes and a standard 3 ^- F: s$ h3 Y$ t1 M
deviation of 5 minutes.# A* S7 Y/ N' a5 W( h: p& p/ r
The three machines were purchased at different times and have : P' o' q$ j" K9 D- ?
different failure rates. The failure and repair times are exponentially
7 b! H2 M2 h! E7 {9 mdistributed with means as shown in the following table:
) o9 i2 [: g8 F6 `1 J! ?2 CNote The solution for this assignment is required to complete
- P6 G: r, i9 ]! u7 g+ |exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
+ _; w% K0 ^) ~your model. + j# r! C; o8 @/ m$ k0 l" E
: w7 f" H, O+ w/ b' i
MachineMean time to failMean time to repair
/ D0 Z7 g6 W n- r' L& SA110 minutes 5 minutes6 j6 @" N. u9 z$ S" E& r! z% f
B 170 minutes 10 minutes4 G/ k) Q( S5 h* ]; L
C230 minutes 10 minutes0 K. F7 V0 A. V, k
: z' `+ a! [8 `6 b; r; H
The machines also must be cleaned according to the following / s* S6 ~: C Y9 Q/ X( `* W( |
schedule. All times are constant:
, T% i5 }" I7 X( S/ R/ }
4 v8 V+ o# `9 eMachineTime between cleanings Time to clean
1 J: Q5 A* N0 H, k6 ]; JA90 minutes 5 minutes
; q* Q$ ]6 O! A7 n% ZB 90 minutes 5 minutes4 t3 `5 n) \2 X! O; ^
C90 minutes 10 minutes
% d2 a, C# h1 E% P* _6 H& r# @* F. h7 Q0 |0 L( r% h
Place the graphics for the queues and the resources.
/ a- W4 n6 c1 _" F8 O1 xRun the simulation for 100 days.
+ D% j: }' X, `9 s$ @' zDefine all failure and cleaning times using logic (rather than resource
: K B9 Q- ?! g5 }% L. fcycles). Answer the following questions:
6 ] {: `# b- e' q# m6 ha.What was the average number of loads in the waiting queue?0 f. i3 @: t/ b. X
b.What were the current and average number of loads in Space? 3 A5 u b* x) o$ ?" e& J# y* ^
How do you explain these values?
( E% O1 {- Y- n0 M |