本帖最后由 GJM 于 2009-12-5 21:43 编辑
; _+ g3 Y0 V7 X& G- r4 R" z$ ` k6 A7 y8 ~5 _: T9 ~
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去, K& n' Y3 R0 f! P
- B" S5 s! x) [! L1 d4 J
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!3 }/ {0 }1 B% S f" n2 J3 S: Y& }
8 b4 H( n. y* x4 J( p9 ^0 | r--------------------------------------------
: v7 n: T* i: T$ i8 Ebegin P_something arriving
% B0 M+ L, H; S- ~1 k3 [8 Y move into Q_wait
- |; S R) \+ b+ w6 C: ]; a- O move into nextof(Q_mA,Q_mB,Q_mC)
6 G8 L8 S) T4 |. Y1 D: T9 x& K use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
; o) {! r- c, |/ P$ A0 X send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
/ h/ s- p: T, ?: D# q+ J send to die% ]( v4 i7 {- a( Q+ p1 }$ C9 t. U/ a
end
' ^2 q6 K" V+ ~: l C6 t: n' P6 D0 M* }' {
begin P_mA_down arriving
+ o! g8 X, f% e0 S# G# l2 ~# ` while 1=1 do
8 _7 c! a# W% `9 V/ e7 \* B: Q2 A begin8 g D* O; F0 s! C
wait for e 110 min7 N- W+ Y7 }0 ]0 P. Q" y( H. T8 l- i
take down R_mA, T4 }) [) A1 ?3 A, W; o* I: O
wait for e 5 min$ h7 i+ X9 k2 ]" W" s3 y
bring up R_mA
( i5 w, f! n5 v' @9 V9 D) E end6 ]! G# Z* F5 v5 Y; z
end
) U- O$ v# z- ~$ ` k$ a! p 9 z/ {) b _3 }' o! y9 d
begin P_mB_down arriving
4 S" j, k( t. C) {/ B' v% B6 Z while 1=1 do
8 g) M( G# l& @& k/ ^$ i begin( S' Z1 L% Y2 m$ `' p. X
wait for e 170 min
9 K- \7 A* m9 { take down R_mB. X# \) e, e/ K$ b, _& s7 f
wait for e 10 min0 }( J1 E8 B% \; e+ A) N4 E
bring up R_mB
1 h# M/ O r/ P end$ N2 H2 v9 M6 t0 Q( o" `- ^% ]
end$ T8 R, f: S1 Y7 v
" d2 Z8 B- E& a0 n4 vbegin P_mC_down arriving$ f, Q# H/ A6 O2 [( \( {
while 1=1 do 4 s+ T) @. b( t9 [3 c4 {
begin
2 e% q8 @( s2 H" ?: Y- q4 H wait for e 230 min& j2 o8 K N/ [
take down R_mC
; p% C6 Q) [5 J wait for e 10 min. V+ q* T& E! r: `
bring up R_mC
! y) E, ^1 N# Y% ] end
5 ?$ ~- P: x" x8 |0 Q) Dend
( Q0 @ m: o! _ ' w# @& v8 s( j" b
begin P_mA_clean arriving
! l M) A" `: E" A" A5 \$ k while 1=1 do
' x% f( b. r1 h/ D4 Z+ k begin2 ]) Q( y5 S( [! {0 L' v* H
wait for 90 min
& t; A& K. T' b% ^: p take down R_mA5 O7 p+ A9 X, d% A" c
wait for 5 min
6 v% b8 L& v' ^. e8 z bring up R_mA8 s, |- w* `, o/ a! U
end
6 i! u: N/ L* @6 i: t+ kend8 i- }( s: |4 W$ D
# b6 X8 r+ J% |% j8 ybegin P_mB_clean arriving/ M0 k; \7 F& P, M" {! }7 { R
while 1=1 do
( B) e& j+ t2 Q! I$ T' {! H" B* Z begin
& o8 C# K$ |- n4 X wait for 90 min3 ]# V4 E( ^' S/ k+ {0 {- A
take down R_mB
5 j& D6 E1 P5 Y/ s) E R4 B& v% p wait for 5 min
o4 ?% q- S h9 g bring up R_mB6 }, z I3 n8 N4 ^
end
l# o; V- d* V4 cend" z; p' H9 a5 t$ b. f% z
. e8 I3 w# _) X" Mbegin P_mC_clean arriving9 X: I% l+ h$ g, W, Q
while 1=1 do
3 `$ \& N. t$ v$ R7 X$ w& g/ \# m begin
+ o! v( \% `9 _% ?$ S3 B' E$ e1 ~ wait for 90 min
" N8 Z' j4 T* I) I) Z9 P! \ take down R_mC
6 e+ z0 |; c" g% P" [2 c. a wait for 10 min+ I! ~& e0 ~) D8 `$ q
bring up R_mC2 Q" Q/ i9 w6 o# s7 k9 t
end/ g$ f) L* O* h
end
0 R9 \5 ~$ S0 Q2 l7 w$ L$ c----------------------------------------
. _$ L4 I% ]8 p5 g0 Z/ ^ 8 v+ r) E9 \, Y6 l8 t
Exercise 5.9
& I! R- g- m( {0 g" z4 n: i# l( K B9 [0 a
3 P9 _$ J3 s# K
Create a new model to simulate the following system:7 I* |3 @. Q F7 J: L! c2 Y9 z
Loads are created with an interarrival time that is exponentially
& V5 b) \3 q# O3 ?% ddistributed with a mean of 20 minutes. Loads wait in an infinite-
- N1 G% n2 M; `7 f- s2 y/ Qcapacity queue to be processed by one of three single-capacity,
4 N$ g0 C5 o( D8 c/ A. u: {arrayed machines. Each machine has its own single-capacity queue 5 J, o8 l) C# J& O4 y
where loads are processed. Waiting loads move into one of the three
" ~ d. J. j, b0 L- g D& Aqueues in round-robin order. Each machine has a normally
0 K9 E# D, H- L5 Q1 I( q( |distributed processing time with a mean of 48 minutes and a standard 8 Q: y: d: t' \9 W5 w- r" v
deviation of 5 minutes.
/ h7 k0 e% G3 ~% ^# Z9 P9 EThe three machines were purchased at different times and have
; O9 E* f7 _) b4 W. }' v6 z; Odifferent failure rates. The failure and repair times are exponentially + E; X1 @8 H* ~- p& J1 O, b
distributed with means as shown in the following table: 0 a- [( v- g; ~1 t8 @
Note The solution for this assignment is required to complete
' G4 P: X% O" a+ J& z& v' A6 pexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ; m( t% @) L ^2 {
your model. ! O; @2 ?/ @5 o1 t8 \
6 `/ N* C% V6 q6 W/ f4 a
MachineMean time to failMean time to repair# _$ b7 D4 T4 o [
A110 minutes 5 minutes' Y5 A# r. L, U# X6 ~0 @8 }
B 170 minutes 10 minutes
: Q" G/ i/ I, V( P# lC230 minutes 10 minutes
' l4 p4 q! Y4 ? a
; G9 W+ o* \- H* D$ e1 F# G. ZThe machines also must be cleaned according to the following
) N8 c2 M4 i7 u; O+ sschedule. All times are constant:
/ _! f4 q. x; ~+ D( a9 t- A. g2 Q1 }- |0 [4 C. V# U
MachineTime between cleanings Time to clean
3 p) h6 g% P. x/ S# B4 |A90 minutes 5 minutes
" p9 k1 `% Q# o! j3 M8 u3 KB 90 minutes 5 minutes1 g- Z; o/ Y1 a/ @% J8 p, ~* |3 J
C90 minutes 10 minutes
1 `8 c5 `7 P- ^6 v% H" {- z2 `% }) g7 P5 H: S5 r! f
Place the graphics for the queues and the resources. 1 k( N$ w. X4 \8 r( {
Run the simulation for 100 days.2 `- Y8 I2 c9 c1 g! P3 J; c. o; @: d
Define all failure and cleaning times using logic (rather than resource . J' q; X" _' E! h8 }; `: N
cycles). Answer the following questions:* S/ n; N9 h0 G2 J6 T( U: Z8 ^0 r
a.What was the average number of loads in the waiting queue?
2 `% F6 R# x: U5 y9 Kb.What were the current and average number of loads in Space?
- N; E2 P. r/ g( ]- y, GHow do you explain these values?
* Z9 C: g1 {, n* L+ K |