本帖最后由 GJM 于 2009-12-5 21:43 编辑 0 O! |+ L. E) ~- @3 G6 L& e) N- P, w1 \
* r& m4 V; J. f, X2 }7 ~底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
! c1 s- u: @* l3 g: h& ~/ t* v' Z. o% `2 t1 a. d( K! o
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!( v6 a& H4 Y9 V6 T! q1 j2 i
" G. Q+ h" Z+ j' V/ t--------------------------------------------6 k# C/ d. d) [7 |
begin P_something arriving% S2 r! X4 V: T) s- A
move into Q_wait
3 q5 E7 p! r' [8 L move into nextof(Q_mA,Q_mB,Q_mC)
* k! J2 X4 ]! q- K use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
) b$ j0 m6 Z% N send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
7 n0 N" v' ]. y# y9 d5 C. r send to die. R* p( J! u1 G; A( I, q) F
end
' S* U/ W& E, J0 A$ h4 ` $ a7 d+ q; K N
begin P_mA_down arriving* |* _2 w3 j" e' o7 M
while 1=1 do - ~, B9 S k9 D& N7 h
begin
& o) q0 s( V4 k/ f5 C' Y) W* ] wait for e 110 min
0 F) `; |, r0 ]( }2 W take down R_mA
# p1 R' R$ h8 N( u wait for e 5 min4 r0 x8 k: ?5 u- L" X# H
bring up R_mA8 x3 J, l7 D. c$ V- b( v
end
" X9 F( e1 i" @5 Dend" g! ~8 H" f+ C( I& h* n" Z* |
! h! G# s7 F4 O$ |, N! V7 T% C
begin P_mB_down arriving
8 `6 \/ n. l$ d while 1=1 do$ k8 P! u4 W8 n }9 x; A; A
begin/ y$ o6 t$ C6 {6 ^" z4 J8 p, n
wait for e 170 min
9 j9 i7 I8 X# d take down R_mB
# w2 s2 m' A! T( i3 [( q8 K wait for e 10 min
3 r2 ?2 u: E& _ `' W2 w bring up R_mB: d5 }+ V5 G+ S3 @6 i
end
2 r b! C5 Q+ G9 g/ F, Eend; k9 ~, Z7 m4 E" _+ X8 \/ n
% o" B0 g) h5 Q: Hbegin P_mC_down arriving
$ ?, D8 H2 S+ K1 u; X while 1=1 do
/ h4 ?3 q3 S$ k- L b, D m& } begin
+ S Y1 `0 C3 e# p5 _ wait for e 230 min% I- ]( u/ @3 k' @. X
take down R_mC& p1 [0 h; x+ t8 W" H- J: o
wait for e 10 min
8 n0 K y1 V6 s; B* [ bring up R_mC
/ r; G/ {5 W, m1 W+ S/ o; j* p end9 ]3 H) v! [! ^7 X8 F
end: v- w& d R! }6 b- T
, f8 T2 r* j. A, B& }% I( P
begin P_mA_clean arriving; k5 S0 c) k, m! o6 n
while 1=1 do
! K+ ^+ [1 d' j7 q; z begin Q# @1 i! {* x2 m' q' i! Q
wait for 90 min# J: _& r+ R0 s% y6 ? M; e, h) {
take down R_mA+ g7 b& u$ A) I# t$ g
wait for 5 min, V: R( {6 Y$ m. F( L( n w: w3 S
bring up R_mA
2 s: ~) c7 O: d5 Q# ~4 u& a end. h0 D* W& [. i: [( x% t# h. c- [
end
& I: a0 U) e4 Q
8 Z# S2 [8 X5 L6 v' Ibegin P_mB_clean arriving
5 P% W, B6 T& {# l! v while 1=1 do2 g8 ]5 T. o$ v C6 u
begin( Y( }# p2 E0 `1 y2 _- A
wait for 90 min
% Q% M! K' J: C$ E" W take down R_mB4 v* W; [' J, u; M$ B i' h
wait for 5 min
- T; @9 f" K8 Z( W: Y: m bring up R_mB/ o5 l- _5 }) M
end
0 u D1 {, z: K, yend
7 O& c, e1 @3 }% H
$ M$ |1 H& b, _* Xbegin P_mC_clean arriving
, t) k0 O' W3 l x4 z; A while 1=1 do
) I) W* W4 Z; B4 [1 d5 p begin
; Q" W* g$ ~5 s' C2 W wait for 90 min
2 t `- N% k T# I. C$ d- ^( h take down R_mC8 k$ t" o b* k
wait for 10 min& c& w0 r+ _! O3 n) `6 L L
bring up R_mC4 {7 V: O4 }9 l Q2 j7 S
end$ O, S. [4 o0 [! ~. K
end
9 w8 v& X; m" S! R, }# _----------------------------------------& g; p( V: b& U) x
9 T1 }9 O# c9 P7 FExercise 5.9
) ], O1 _4 B& x; [9 {
& J2 _2 A ?7 K, A2 ~3 p6 t( t% k4 F) V3 n Y6 P5 q! }0 e
Create a new model to simulate the following system:' o/ }- D- B. Q }* s' n
Loads are created with an interarrival time that is exponentially
2 d- C6 H& [1 X/ h: N& Adistributed with a mean of 20 minutes. Loads wait in an infinite-- V* v4 h6 v* I B( ~; x: {
capacity queue to be processed by one of three single-capacity,
& k3 m* j/ K% \arrayed machines. Each machine has its own single-capacity queue
2 n8 u7 R! z, ~5 S. B5 swhere loads are processed. Waiting loads move into one of the three / ^! l9 [$ X3 C$ B6 s
queues in round-robin order. Each machine has a normally " D* H& d& |# D6 F7 O- ]
distributed processing time with a mean of 48 minutes and a standard ' h5 e1 o5 [8 {% m2 X$ s( Z
deviation of 5 minutes.
! e2 t# G7 y: t2 P9 G3 N" bThe three machines were purchased at different times and have 3 ~' G8 T& u, g& h; C4 l
different failure rates. The failure and repair times are exponentially l, W/ U( E) H! B# C
distributed with means as shown in the following table: W0 W2 O# H7 d s: a. t, _
Note The solution for this assignment is required to complete ( i4 |6 H3 a) m% A+ R' ]# p
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
7 P* h: p$ ^( Z$ L# x4 syour model.
9 f6 U/ A$ F' f1 {# J; W4 p# r! u9 e6 y/ z" m# A7 N1 s
MachineMean time to failMean time to repair
* g; N" T6 r/ R7 m; qA110 minutes 5 minutes5 h2 ^, B1 r& a& q; ~
B 170 minutes 10 minutes
, K6 F# }3 `" E3 vC230 minutes 10 minutes" \' L! {) [7 W/ ^3 V! U. z
, F/ H: q+ W+ J, d+ X
The machines also must be cleaned according to the following
( o O) ?9 F) G& J6 A) l7 hschedule. All times are constant:
& {6 }' s; `8 L! b2 ?0 P9 J& E: V- F- D4 J
MachineTime between cleanings Time to clean
# d" V- Y7 {5 B' `A90 minutes 5 minutes
+ a, Y1 T. ?$ K' h2 z% WB 90 minutes 5 minutes" E( p* \/ w5 d7 A( m, I
C90 minutes 10 minutes
% b8 ~ T# u% q1 g6 z9 g# z" t K# Q1 {. q# ^0 ~
Place the graphics for the queues and the resources. * C8 h2 ^. h7 M
Run the simulation for 100 days.3 ^, e6 |' {' p4 S2 }# M8 J$ O2 S
Define all failure and cleaning times using logic (rather than resource
; ?! A) c" J7 Y! N% C3 u. qcycles). Answer the following questions:9 ~4 m% s# t/ {4 `# B
a.What was the average number of loads in the waiting queue?( t6 `* P3 m- `- y& [* H: h
b.What were the current and average number of loads in Space? % }2 V l- k7 k$ \, W, l
How do you explain these values?
9 D5 H: K; I: x) q& m$ V |