本帖最后由 GJM 于 2009-12-5 21:43 编辑
v: |9 j% |+ l1 q& E
% x+ z" U7 y6 r. g5 j底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去/ i3 {3 d, N. h% k% t' B5 \, A
' v; X& q H( ^3 G- L不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
% B5 C* h0 y4 j: ~% _% Q6 W# x l8 M6 s2 L; U- j3 S; y
--------------------------------------------
& ~; w: q# W+ z$ C6 _. |# r% Y: ibegin P_something arriving
& ~9 ^& W' E; T. v: b/ l/ I move into Q_wait
+ X6 h5 p" p, @# B- Q3 N) ^! [' f3 k0 | move into nextof(Q_mA,Q_mB,Q_mC)
" ?. Y& e" Z) t; W K use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
: n4 }$ m+ U- b1 q send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)0 O {4 z' M( A3 J$ \4 Q* ~
send to die- ?) j, F8 O4 `0 ?% z/ M# m$ D
end" X! C Z. W. z
% Z$ i& E- Z, T- qbegin P_mA_down arriving0 p2 ]1 O+ f4 N" K5 J+ H# [3 m
while 1=1 do 1 w. [4 Z! a3 h
begin- N0 E/ s, K1 I7 E" \, f5 t8 ~
wait for e 110 min+ N; ^7 G' g- J( E
take down R_mA
7 `9 y* p" l- x% H# h2 J* Z wait for e 5 min
0 ]3 i, j( s, Z! l bring up R_mA$ A3 ^, Q8 M7 P2 x1 w2 k/ f
end- W: A$ l8 A* T$ I" O8 E+ g$ F
end& f6 |! I2 g- i+ l
. m! I: A0 c; t# `" u: G$ Z
begin P_mB_down arriving5 O$ i2 f: F @9 F
while 1=1 do
1 ~: ?* s6 r0 p# H6 q$ u) Z8 ] begin
0 s$ [& e/ F0 M2 u' ` wait for e 170 min6 Z' ]% J& v8 F9 A1 _( i/ G2 `
take down R_mB
& L* H2 n5 U, V wait for e 10 min
+ q( a; F9 x: o6 \ bring up R_mB! @; y( Z2 D3 e/ B: t
end
- p# x9 o: ^0 ?. e- {! {) q+ L+ Tend
# A2 X* i8 {& m0 b- n ! m3 Y" b0 U$ g/ j9 I& I4 a
begin P_mC_down arriving P" w: m; @5 O4 H
while 1=1 do " H& {% w" v. B
begin
/ n! q* e8 \5 N$ F$ n wait for e 230 min1 h( ~2 T; { d
take down R_mC
( e- D( E8 r7 i/ l wait for e 10 min. H3 d8 ?+ T$ K7 f
bring up R_mC
7 N8 `* W- P# M+ S( L0 Q end1 z# v9 n! a& b5 `
end
9 X; d( u6 m0 ]/ } / Z5 T1 S$ S$ ^8 j; ^9 _; L
begin P_mA_clean arriving
6 N/ p) M9 z" p0 J while 1=1 do
1 P# P2 ]4 S- p, t begin5 R9 a# Y; y; ^
wait for 90 min0 f+ G9 b9 ^+ c" g# K
take down R_mA
) \' `$ ~2 k* b( B wait for 5 min
8 V1 z6 G: B z3 s# [ bring up R_mA
/ u2 L) `: d: T end
8 W. W2 l4 B9 m: aend
/ z: W8 L3 ^) Y- e8 b/ f) t % K7 f! W2 Y- v6 ?) }
begin P_mB_clean arriving% J1 W8 g. n. U" F
while 1=1 do! ]6 w R. h- I' W% s
begin
. G' h3 w; H- N- \( y wait for 90 min3 W9 @% H( `( | N! w5 N, `
take down R_mB! v) R/ P) z# k' W& ]( Z3 H, Y' @+ X
wait for 5 min" q* q( r7 C1 O* G5 j8 y
bring up R_mB
# i1 [5 | b- @ end
* }0 {4 B3 M% A6 ?- m9 hend
4 t1 W' h4 w' k, g. U7 [# @, i 0 [8 l0 ^2 O* x% x
begin P_mC_clean arriving
6 P* ^% E h4 C% R while 1=1 do9 M0 g S8 V1 {
begin. s( g: X- L! G+ i% `: {% u" T
wait for 90 min
7 j `2 Z5 e' X4 O/ {* E: x; Q! A take down R_mC2 A# k9 B7 P4 f+ {% e% e, A
wait for 10 min, k; i% H& T, n# Y( o; Y3 T% G( n6 {/ ~
bring up R_mC
6 `+ H; t9 f* x1 K: k end
; F' u0 `1 N- T$ {! oend
6 @" ]- T% T1 Z W4 k/ P3 J) p1 r----------------------------------------( I. `. l( c) I$ `* h; i; B+ w
; M: d6 N( g7 f4 f
Exercise 5.98 m; k. R, K, ]' g' ]7 G) ^
; |( Z7 p% ^ ^: l0 s. {# R1 L
$ K' G5 I5 e, n& d9 N: `/ \% fCreate a new model to simulate the following system:! R3 ~3 g' c3 \, Y* v' n( B% [- j
Loads are created with an interarrival time that is exponentially ) O/ {% ]# ^& y* H$ [# A. s* [% N: y4 G
distributed with a mean of 20 minutes. Loads wait in an infinite-0 n x3 b- m, z
capacity queue to be processed by one of three single-capacity, / V2 ]* y2 o9 x ?" G( G2 C
arrayed machines. Each machine has its own single-capacity queue : K X1 b _: x- }3 o" p
where loads are processed. Waiting loads move into one of the three 2 |4 ~2 O$ q8 R3 ?" Z. X- i1 y6 y5 Y
queues in round-robin order. Each machine has a normally
$ ~+ t" r% g) i; v& o) Ldistributed processing time with a mean of 48 minutes and a standard
5 | t- \: z. m6 \7 H6 T; F2 ?7 m1 Zdeviation of 5 minutes.
7 q" t/ i# Z% W; n6 R# hThe three machines were purchased at different times and have / n2 r' O7 t. Q+ J& }, a
different failure rates. The failure and repair times are exponentially 3 d, D k+ b7 D* m1 d2 |. A/ ^. S
distributed with means as shown in the following table: , F6 v E+ }3 W$ h/ Z: N
Note The solution for this assignment is required to complete
9 @! _6 l2 I9 ^- d: y# ~1 A( N* f. texercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ' W: V( t, n$ W$ o/ |6 Q7 E5 y; p
your model. / l+ s# x) T+ V
5 t; G' r! n* X
MachineMean time to failMean time to repair* Q) O% J( u7 w+ g
A110 minutes 5 minutes: k' y. M6 a+ t. n3 T8 t
B 170 minutes 10 minutes
+ D7 ^" b% c/ Z9 Q+ `) fC230 minutes 10 minutes
" x9 C& S7 C2 ]& B5 l. Q9 B1 M( c1 `
The machines also must be cleaned according to the following
l3 r1 x. P$ wschedule. All times are constant:
3 U E3 T6 H$ v, r$ I: }5 T! h q# ~& j
MachineTime between cleanings Time to clean
/ C+ _; G+ R9 @6 HA90 minutes 5 minutes
+ K' x$ Q: g; F9 u: |B 90 minutes 5 minutes
) O W) e! R X( pC90 minutes 10 minutes3 {' \; l5 P! r/ {* R$ T
9 ^/ W L5 i6 jPlace the graphics for the queues and the resources. ' P1 y, ~$ Z8 Q$ X8 n7 n& L
Run the simulation for 100 days.' @. ]/ _" U1 {0 A- F0 @
Define all failure and cleaning times using logic (rather than resource ; t9 ^3 h1 {9 a" L; \) P. Z
cycles). Answer the following questions:0 h% l3 S! a2 F! v0 |& C! y' a: R
a.What was the average number of loads in the waiting queue?
4 K3 V" P, f0 B, r( w! s: w0 @% kb.What were the current and average number of loads in Space?
% e9 `) s0 U) c, `6 h# N! J- pHow do you explain these values? & U# F9 i1 L) B8 R' a
|