本帖最后由 GJM 于 2009-12-5 21:43 编辑 ( s3 q8 k5 q$ Z6 W+ ^; z+ q2 w1 `, C) Z
+ U$ e% i0 |* C底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
) o9 s. ] S1 L8 A; C. Z0 M
5 L4 X& ~7 y1 t2 G5 s不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
$ `" \" P* J( M4 q1 Y$ k
* A, d) D) `5 R5 H--------------------------------------------
" ~% C } m# P0 Ibegin P_something arriving
) c. b5 t; F7 p+ _5 _9 _7 _% M$ C move into Q_wait+ ^7 _7 f1 a& l8 X) {# A
move into nextof(Q_mA,Q_mB,Q_mC)
9 n6 F6 K0 k6 t& m* O use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min# L, b2 O+ o2 h9 y- q
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
9 B) ^0 ?7 m* [ send to die. l( e: Z9 i0 C. I$ e# o5 h$ X
end
+ p( `! M( T+ Y# T$ Q6 S 0 b& ]& q/ |' n+ M
begin P_mA_down arriving5 D! e0 q$ C8 {) r8 E
while 1=1 do
/ @* T. `7 k) n6 f begin' g" n" b8 `6 J$ M* ~+ V
wait for e 110 min4 _& L7 `- j. M2 v' U
take down R_mA& B5 V' p8 l& F U
wait for e 5 min
: j( S, e# q8 ] j; J' y bring up R_mA, L- X; ~+ b I& M8 ^! z% U
end6 I% U! i+ [( ^ u) S s [5 v
end
% {0 L# g" H) n% `' S
7 Q" f! S/ g5 K& B& Y7 j0 cbegin P_mB_down arriving4 @% q$ z+ m* t
while 1=1 do5 T4 G( A9 Y: z+ {2 s# Z
begin* w( m2 @5 H; O- `4 r! R
wait for e 170 min p& h/ V+ j& a3 C! O
take down R_mB
; D7 _, {5 J8 [5 i0 N1 W+ K/ h wait for e 10 min2 O* X X8 ^8 G& p( S
bring up R_mB9 ^/ I; l* Z$ p9 V. ^$ _3 _
end
- x9 w7 N6 S! ~! P! j! L0 \9 @end( z, y4 r4 j# b% Z5 K0 J
& z# q7 h+ T9 J0 f& G; ^. ?begin P_mC_down arriving+ V) G. ?% d3 \' x! R8 `$ j
while 1=1 do ( ]; t% }6 e& _7 q3 a$ R, f
begin9 L* S) B$ q5 N8 J! N. N
wait for e 230 min
3 g8 y8 K3 F5 S take down R_mC& h- O6 Z: M6 w( P9 t+ x
wait for e 10 min
v$ D# Y* f$ Z6 y0 z6 Z$ B$ v bring up R_mC) Z: O! V$ f* ?4 p# d( T' f) _) I4 K
end) h/ q, e) z3 o- ~ c3 T, _8 f! M
end" {+ o5 M4 z, n- R% R
1 A0 Y2 p! ^' j2 I. p0 ~: O
begin P_mA_clean arriving+ B: v# r; L2 U( v- Z6 W. P' l
while 1=1 do
0 k5 I u2 H; ^6 F' v; Q0 y begin4 X8 V- ?& m9 N! X% \1 N
wait for 90 min
# D8 V9 v6 X: ]1 B take down R_mA
% N8 `. O5 |9 q9 O, Q6 H. u, a: W wait for 5 min
0 t* L6 _: j3 F4 D; d bring up R_mA
3 i9 H& H, a- \ end; J9 I& @1 |( a# h8 S7 a; Z
end
+ K! `5 c \) y3 g k& m% S" }7 _$ S6 m
begin P_mB_clean arriving7 Z& d4 D4 R D# q0 [9 |' O: a# w1 o9 q
while 1=1 do
) }2 K* c0 f* }9 m1 k- h begin8 B: o! E4 _$ ~! F0 b# b4 T; o
wait for 90 min
+ k; ?# e& E8 k' y take down R_mB6 y5 y- c8 ?5 x: p* g# R6 k1 _( Y
wait for 5 min
" C* @) M. v' y; X" b" V, Z bring up R_mB9 O! T: n( Y8 E: S' f
end( X3 @4 ^* u& `* h+ c( p
end) n) H$ e @4 T- k+ f
, \+ U Q* H, \/ u* |begin P_mC_clean arriving
% L3 R: V3 R; z/ e while 1=1 do
! D. f5 r; K5 a begin
* |7 i Z5 l: ^; D. v; ? wait for 90 min. Q5 ^, X" ?1 V. ?5 K% ~
take down R_mC
. A0 e$ [# F/ _3 y5 p/ N* h wait for 10 min
+ q* x2 t1 Z/ A8 P/ m( P bring up R_mC" Y' V9 T) Z5 Q6 {% ~
end7 o6 Z2 m+ G" A% o& Y& J4 S# J' X7 S
end
7 _3 ?6 X0 ?+ i----------------------------------------0 c. D' r$ M& d6 R) G1 Z
5 h& n6 }% f8 p) o, \" KExercise 5.9. o0 K. C- k: {9 d: u
# U+ M3 i" B; B6 a+ F& ?9 x* f2 ~0 x: F' j# k2 s4 T! I- c
Create a new model to simulate the following system:( I8 o/ H6 v) X% B& X
Loads are created with an interarrival time that is exponentially
2 C) a3 c# T4 ~4 M- sdistributed with a mean of 20 minutes. Loads wait in an infinite-
4 P" o: ]) p% z5 i7 [capacity queue to be processed by one of three single-capacity, 8 ~! ^; {, S2 P; V3 I
arrayed machines. Each machine has its own single-capacity queue 4 P8 d' d0 P$ K5 Z( x+ t5 K
where loads are processed. Waiting loads move into one of the three
" U! e, j/ S6 ^queues in round-robin order. Each machine has a normally
+ C( I. ?# @7 z. Z$ P& D4 ldistributed processing time with a mean of 48 minutes and a standard
! Q0 c; l S1 E1 B4 |: Ddeviation of 5 minutes.. g. t- k4 l( F* o' x8 M U5 K
The three machines were purchased at different times and have
- N+ @. f& e |+ u1 {" Ydifferent failure rates. The failure and repair times are exponentially : U/ M4 S1 ?& x3 p2 Q& x
distributed with means as shown in the following table: " o [% C& U: e7 a2 w/ O5 Y$ t
Note The solution for this assignment is required to complete * y- Y* P% G) X* m+ j
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
8 T) i; ]; q9 ?8 U) x, K% qyour model. w. A: L( ?2 P: ^
2 k4 F( v' E, J& S
MachineMean time to failMean time to repair ?' L- i$ K: Z, p5 {: b" |) G
A110 minutes 5 minutes
4 E1 \! [' J6 x2 c& _7 t- `: X/ ]2 tB 170 minutes 10 minutes! f5 f$ D, n) K5 l4 q
C230 minutes 10 minutes
4 d# E/ x" X v% A" Q) \7 a9 l, _5 `& T
The machines also must be cleaned according to the following
- u' b. l) S6 j3 ~; l) I: ^- Xschedule. All times are constant:
* Q6 K$ u2 v G; I/ _8 e
% V; s* a( E% K7 R& F: nMachineTime between cleanings Time to clean* u3 h. b, g }- }7 u. U
A90 minutes 5 minutes6 S1 V/ w- E8 V4 b- J$ G
B 90 minutes 5 minutes( o% X/ [9 C# C3 u @; ^# r
C90 minutes 10 minutes
/ a; [8 ]4 ~( i8 R5 H% G' i8 h6 O3 [8 h% F1 R$ J h9 f1 I: D
Place the graphics for the queues and the resources. ! O: [2 B ?8 K: u% d
Run the simulation for 100 days.1 f9 f8 s1 ~% ], J, R/ ~
Define all failure and cleaning times using logic (rather than resource $ u* S- B; m$ }
cycles). Answer the following questions:
2 p7 i8 ^' n8 O; P: a6 pa.What was the average number of loads in the waiting queue?; B1 B( ?9 h, p {5 i+ f" r
b.What were the current and average number of loads in Space?
* x# ]* W/ N) N2 T# a- uHow do you explain these values? & d9 t2 D4 n P5 h+ b t9 M) t
|