本帖最后由 GJM 于 2009-12-5 21:43 编辑
, ^/ D% I" Y9 _3 D/ f9 }/ t& |
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
2 n9 x' r# Q+ R( i f/ u" [4 Y
6 k2 Y3 \, l2 E( S0 p$ ~不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!- E% u) c) V7 z; h( k9 E2 ?9 k
0 i F3 S( F5 P) ]/ h) }# y5 [2 C
--------------------------------------------
0 U* {6 q& L$ V) e% ~begin P_something arriving
I) p; n8 k+ X& ^# |8 j$ Y% u$ { move into Q_wait# _; y$ e& z5 l* H) w
move into nextof(Q_mA,Q_mB,Q_mC)5 _, f( Z# W8 q v; G
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
+ e$ S8 S5 X0 e0 V2 a send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
6 @: a p( V- e send to die; m! K! N* s7 n2 B
end- e u8 q' ?6 d {) s# v9 G' N0 c
) b& k& |0 m* t; i2 {: D; u, [/ Ebegin P_mA_down arriving( c* r" B9 O4 H% }9 X x$ ~3 ~
while 1=1 do " I% M% i7 N% }4 ] A) A
begin
' u% W, }1 w7 W0 e wait for e 110 min' t, c4 I! Y S% f5 R
take down R_mA
+ t9 v. L2 C; t wait for e 5 min
' c7 r8 Z2 E |" A- K bring up R_mA
- p4 g* U/ \2 X end
% I. s; l$ F8 f, ~3 Gend
+ b8 ]2 f' F; c. l- E7 V7 { # r S) i8 S0 ^$ q! f q
begin P_mB_down arriving% `+ D; `& u7 M( M! n8 V
while 1=1 do Z/ J) g! j6 m' t
begin- Y& e# \; ]: h$ t X
wait for e 170 min
, {; u8 [2 E1 V take down R_mB! z( x6 \5 u5 w) ~; J
wait for e 10 min. _2 S5 V" z- s" s
bring up R_mB4 c) f3 \4 L" F3 u! z5 }0 ` l
end7 N* v( m N& F/ ?" Q; ]
end
& o6 f& n+ P5 _5 u
6 n* ~0 u1 s) i/ }( ibegin P_mC_down arriving
( N5 |" w s! j |4 H% S while 1=1 do
/ ?. e% e1 q- k* |$ } begin
8 {/ f' n7 g& {3 m" i) X/ _, z wait for e 230 min5 w, T o9 ]$ m2 l* S( q
take down R_mC1 N' {" K, V2 }# p* H
wait for e 10 min8 A$ t! ]1 e( \3 S% x) S
bring up R_mC
) z1 U5 }8 c; `. r# Z end' J+ \6 m E: T o: U6 H# _9 `
end
' B. v9 d' S+ Y, v7 S3 S! s ' M6 l5 K7 a8 }, V
begin P_mA_clean arriving% q* W1 c3 S+ L' b
while 1=1 do9 R4 g. u( Q( `% z1 m g: d9 Q6 |( J+ ]* {
begin Z4 D- a: i: E6 `+ _7 h
wait for 90 min
6 K- j* Y% Z+ t" _, Y0 ^ take down R_mA
* P* d# W* t% x' V1 }6 {$ ?9 t wait for 5 min/ ]" v' s0 r7 U; o6 q
bring up R_mA: Q7 X+ x! d, k; _! c
end0 ~1 c3 b c, \( H
end
s! i2 A, l4 o1 } + ?. \" |( W: i+ I3 F
begin P_mB_clean arriving9 m m6 z. g7 J' E
while 1=1 do9 l& v% d( _8 Y$ A, ^
begin. @9 ~7 W0 E8 B6 V
wait for 90 min/ I% J) Y4 _* i7 G- {
take down R_mB
% ]2 L1 ~' u7 d3 w* ~) X) H wait for 5 min
3 x3 Y* f/ H8 r- X, O* _ bring up R_mB: b+ Y, S) w3 M( }" t+ ^8 V, s3 d( a
end p: O% ?/ L. T, w5 d, K1 o0 s
end
# @& R! Q7 F4 { . F8 V7 y/ I2 `
begin P_mC_clean arriving
" M3 `: k4 j% ~6 a1 b p while 1=1 do+ W7 D9 {- K0 W: J1 m
begin; a% p- Q# i7 A
wait for 90 min
- \0 O/ s. i0 {9 Z5 A% V# o0 {5 } take down R_mC4 p+ ]& ?' h- F
wait for 10 min9 s! ~7 j: u Q9 W6 Y0 g" W. e
bring up R_mC
# q) R( @. K1 G- O0 Q1 N9 _, q, X. O end
4 ?" b2 p; ]6 h% I# f. W+ @end
' ~2 ]' ]' w! @----------------------------------------
?- T' e) T" y- G+ n
5 D5 ]8 M( u5 g! w7 bExercise 5.9
# o6 Y) e- {" e& o
. D7 C7 _, u* g# d" _$ x$ I6 Q' ^9 S8 a+ u" {) B
Create a new model to simulate the following system:
3 p3 I7 e0 p/ [$ W3 u" ELoads are created with an interarrival time that is exponentially 5 {- J' {$ i( A
distributed with a mean of 20 minutes. Loads wait in an infinite-% K- G, J3 R9 y% W4 {5 I+ g
capacity queue to be processed by one of three single-capacity,
, t0 J' Y+ e* ~. larrayed machines. Each machine has its own single-capacity queue
3 }, L8 j+ O J, y! ?1 i M7 c' Iwhere loads are processed. Waiting loads move into one of the three
7 {6 s1 r' w. m( `% X; {queues in round-robin order. Each machine has a normally
% m" c U2 l3 H3 d0 i5 y( c% j) Jdistributed processing time with a mean of 48 minutes and a standard
9 x/ U$ G+ t; X. m$ \deviation of 5 minutes.; A2 e2 X8 G! L4 f) O
The three machines were purchased at different times and have
; c5 y0 b" W" b3 Qdifferent failure rates. The failure and repair times are exponentially
7 J9 n! E* S sdistributed with means as shown in the following table: ( Q% E8 t l2 L ?! [
Note The solution for this assignment is required to complete . o( ]- Q+ U- e# l) k! v# [! n
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
8 N+ x1 R% H8 }, uyour model.
' f7 b2 f4 W" m' T9 M0 _4 E1 m4 D& N* f0 }' ]. a
MachineMean time to failMean time to repair/ l, n% d/ m0 S& c, r
A110 minutes 5 minutes
2 \0 w1 ?1 r2 B! R- u7 R- HB 170 minutes 10 minutes
?4 e: h; e7 `$ L& G$ Y) V# IC230 minutes 10 minutes
5 x& ~1 W5 D" }3 Y* O( j
) f: X, s" z, B+ X% a) ?/ OThe machines also must be cleaned according to the following ) | c( X$ b3 ]5 F( e0 C
schedule. All times are constant:
8 A$ H9 [) W# E% a2 f& P5 L$ e8 h1 v! w- w4 f( g
MachineTime between cleanings Time to clean( {: _( B; t c% S2 f: {( F: s
A90 minutes 5 minutes
( [, a# K" s0 z# mB 90 minutes 5 minutes+ L. |2 }$ E% O6 C6 [
C90 minutes 10 minutes& D* W, e5 M# b# c
! r4 A1 e: z4 d1 dPlace the graphics for the queues and the resources. & m, ^1 ~/ G$ Q' [9 G. A% G
Run the simulation for 100 days.; k8 M3 R3 ], {9 O4 X, F- t
Define all failure and cleaning times using logic (rather than resource
% h9 ?8 N" V \cycles). Answer the following questions:
9 {( S/ P; Y, Z1 I8 J2 @8 I. qa.What was the average number of loads in the waiting queue?: q6 |& Y( N$ i$ [2 A* r& _/ j% F
b.What were the current and average number of loads in Space?
( j& d' \' T0 i P% k0 |How do you explain these values?
0 T: _! e; A3 f& n% o |