本帖最后由 GJM 于 2009-12-5 21:43 编辑
" L3 v6 o: P; D9 ~3 w; S: ]% ~ ^
6 g7 G- {1 N7 v3 ?* a+ j D底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
- i5 Z& i+ A- q3 B6 ]1 e4 K# I9 w5 A* X7 y/ c
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
d! ?) D* s! l* \+ M' W8 C3 @+ w4 ~, P" b& g
--------------------------------------------
& t O2 O, H6 \7 R3 G. h3 O) Pbegin P_something arriving! l8 a. y7 ], T: U! d; ]) o% ~+ Z
move into Q_wait
" U% C3 M& W0 m/ n3 n3 V2 A0 V move into nextof(Q_mA,Q_mB,Q_mC)" F2 E: s9 @7 P ?" |. D& }) F
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
& y6 W- l, q1 c( p8 ?8 i send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
0 A; T" L# v( {; `% { send to die1 o1 e7 }+ [6 b) _& W
end
1 `/ M/ Y) k x- \4 o* V8 y - {8 @- i! u: `# C' r
begin P_mA_down arriving
+ W' E/ s8 y* j# s9 M+ Z$ J/ x while 1=1 do ; f: z9 {7 ^+ o* s3 {2 c; B
begin" o' b/ t# e3 I2 S7 l3 }6 F7 l
wait for e 110 min/ Z* w. _# b* x! n5 b
take down R_mA" c! R; F# Y6 M3 z) B! g: P2 b: Z
wait for e 5 min% J4 j5 T2 Y4 b y* j! M
bring up R_mA# I1 ]8 k- S3 y, U2 S+ P, }
end: @) v h: ?9 q4 [3 f. ~
end
; W4 A5 G' @. k. i# k
" N a7 z! z. \" E$ I+ j5 M- z; Sbegin P_mB_down arriving. o+ F+ B' C- q/ p
while 1=1 do
4 O! g; Y W. h" U begin
; l/ G: K& M. w9 U wait for e 170 min/ v* K9 k+ _; c; b8 x5 }
take down R_mB
7 e2 w" u! H* `' K6 y1 { wait for e 10 min
5 ]7 N/ y; n! Q9 k& v$ i! A& D- R' m bring up R_mB" }$ l4 [5 H4 x; _* y' F1 H
end
* Q/ F% Z3 }; A( `+ P+ {end% j3 l' r: O0 @) K# ?: p/ ^- T# ]4 J
* t" g6 L! O0 e* {/ O
begin P_mC_down arriving
9 {) C. r4 l! Q" x4 t: d( \ while 1=1 do
! P8 k/ ?% x) r begin
3 d8 `3 I/ f: m) w% v& o wait for e 230 min' q! }% ]% r/ O7 m
take down R_mC7 K) A% \7 t+ z/ S) l4 B7 p
wait for e 10 min
0 d; b$ {) y- I: Y1 K- @5 H! P g bring up R_mC0 J# ]* ~: H) k
end s1 z/ ?) G: ?% m
end
" w8 Q' ?' c. Y; y# D' P- Q, Z ! x$ I- P8 |: f) `& P" A; z
begin P_mA_clean arriving7 \2 z' v8 k' f
while 1=1 do; |' ^- |8 ^# h' z, h
begin( d. `: M9 K* b
wait for 90 min* N/ d9 u! j- ]/ ~( V5 I Y: U
take down R_mA
( o- B- S+ `4 P. J2 u/ F' B wait for 5 min
# l: ?2 v0 X' q bring up R_mA
0 r2 }% J5 X; ?# R% K( R end9 `, {" d9 Z* }* S1 t' l
end1 L; W2 t* [ @0 K) h- @# u
8 U3 r5 v% }8 Q o) H( D( C' a
begin P_mB_clean arriving
& F& S4 o9 s2 ]+ J3 [0 q) ` while 1=1 do
/ [. ]0 \$ D& a p begin3 h& |$ k# u1 q4 x7 l" e
wait for 90 min% ]8 f7 F3 k. b% z( a
take down R_mB W" R z6 K6 F# v! v6 Y; [) d7 h
wait for 5 min: [. ~3 F Y5 D; E
bring up R_mB+ o9 i) c! K9 j! {2 H
end
- I$ F# N, A: aend; }7 i: a, S1 P2 {6 t
# N6 c+ c4 J2 t7 X+ Xbegin P_mC_clean arriving3 U: s1 O* y6 b3 R# n+ W
while 1=1 do6 a- w8 G8 v$ S4 r9 e5 L! [" `
begin
) g# e3 U$ |! D. U" w( b wait for 90 min h1 L' t; w% k0 l
take down R_mC
- [$ G0 S" C/ \% ?: G wait for 10 min6 F) y8 _5 E# R- V
bring up R_mC
5 r4 L+ Z$ F2 B/ Q8 x8 Z+ s end/ W6 [6 w, c& `4 W* G
end8 g+ v- J) f5 m- K/ V
----------------------------------------
k2 D* x' F2 x
G: ^; @2 ^: b. D2 ?! P2 X4 V4 D2 m; _0 RExercise 5.9
- [0 P# Z. Q/ g! I3 y: X3 ]; S: M
$ B! t, }7 u/ f! {/ E% S+ Y% k4 Y, N
2 J: k" P* l, g' ~Create a new model to simulate the following system:2 |9 K+ c9 g+ F z( E @( [+ k
Loads are created with an interarrival time that is exponentially 3 @8 V1 U) v2 j$ k; w; k8 D; `
distributed with a mean of 20 minutes. Loads wait in an infinite-
: w& E$ F/ P) _9 c' w" E* r2 i- {capacity queue to be processed by one of three single-capacity, 5 d+ B, F0 e% y: j2 u8 q% w, f# m
arrayed machines. Each machine has its own single-capacity queue
k1 G2 }( ~8 Z' Q( E9 q: W( A# cwhere loads are processed. Waiting loads move into one of the three + b3 C: W) w2 t" {
queues in round-robin order. Each machine has a normally
( J( a- B" I) w7 pdistributed processing time with a mean of 48 minutes and a standard
5 q/ e4 N& R p6 bdeviation of 5 minutes.
7 d5 g l; f' k8 R, ?" {; kThe three machines were purchased at different times and have
& h7 S$ a8 r) h# k: [. z& Tdifferent failure rates. The failure and repair times are exponentially ) \ b0 `7 y* |( h
distributed with means as shown in the following table:
" A0 e* N2 y5 }1 y1 WNote The solution for this assignment is required to complete
! z, F1 M3 B; O* ]! b$ _exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
7 V3 m3 }' H% }4 m, B. S5 Eyour model. 7 B0 r, I% K# J: H$ e5 z* ?
* E/ r) }+ v; { A/ F {/ X( E) CMachineMean time to failMean time to repair: w/ q1 U8 r; o5 Z$ x
A110 minutes 5 minutes
1 `' i' C, e6 E5 k# u5 xB 170 minutes 10 minutes% F% c. f5 I" w" X( [
C230 minutes 10 minutes
[/ T8 z7 w5 a( U- o; ~1 A- \) R- k/ R0 l2 s( i F1 Z4 S, b9 z& I( q* v+ F
The machines also must be cleaned according to the following
' w4 x U4 r! D h" \0 Vschedule. All times are constant: ; j3 F |, x7 }* b: D [2 h
, t; h. V7 P" Q" v/ KMachineTime between cleanings Time to clean
; s0 Q% g8 G( B X$ z. WA90 minutes 5 minutes4 T7 W' R, {! g9 h4 k
B 90 minutes 5 minutes
1 `8 M5 h- e% c `# @C90 minutes 10 minutes
0 B; \' K3 j) p% i8 Q8 |0 A6 n" o7 B- i$ t& e( N
Place the graphics for the queues and the resources. , x3 d' w7 w0 ]/ ]! o. [8 v
Run the simulation for 100 days.
9 O; I* {1 q& K) q1 {Define all failure and cleaning times using logic (rather than resource
& ]" `; ^* ? J* W r6 fcycles). Answer the following questions:* K0 t* p" e% p# _/ R1 n* K6 L% S, M
a.What was the average number of loads in the waiting queue?
; L& a$ q$ Q `+ J6 q$ zb.What were the current and average number of loads in Space?
+ o" N- }$ f; b! \7 s: Z6 B1 c5 CHow do you explain these values?
; W/ `( i; D/ i/ U |