本帖最后由 GJM 于 2009-12-5 21:43 编辑
% Z0 D& _8 B. M# i9 Z2 {. T4 s6 A) | ?" r9 _
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去; i' D9 X" k. p' C
3 w3 L, c# V2 |. q4 [
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
9 v P7 g" x5 a1 ^" L; a/ Z5 x8 g. ]9 }' c3 q) h" Y$ n
--------------------------------------------% t2 _3 i! q# W4 v% \7 q
begin P_something arriving9 r; L1 u! d# h M' s( Y$ p
move into Q_wait
$ ^6 e$ W! {! z! a) J4 S move into nextof(Q_mA,Q_mB,Q_mC)
2 O2 L1 i% Q3 U6 }, T) B use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
. x0 P" |, Y( t. H. H0 C O send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)- }# e4 Q7 `, x# e+ _
send to die
( j9 p! Q+ w* N( D; ?3 U( q, S- f* A0 ^ kend0 y3 ?+ o. |/ y i% I( f' H6 L) Y
& `# l4 i7 F8 D6 Lbegin P_mA_down arriving4 n4 \3 e: Y5 L4 P( B4 X b
while 1=1 do
* N+ i" T4 H8 S& f/ ~9 \ begin: T3 B% ^6 t5 y
wait for e 110 min& o* m! D& j6 R$ a( V
take down R_mA
+ m4 c1 R- W9 {& U) g; d wait for e 5 min
: R6 i" S1 e. k& k' S7 P4 c bring up R_mA
8 E5 R; u. A8 h% \ end
- g6 Z8 O: z: i9 N1 iend
7 N5 u9 J: M" V2 I. `& ?) @
* Q) {& s: {0 i" _begin P_mB_down arriving9 G* j5 y4 ?8 {0 F$ T
while 1=1 do
3 D) F3 P5 C$ I. _% P8 ` begin5 x& g: s! C) m) k7 {0 K: Y0 x
wait for e 170 min
# \5 l, m. p$ l; ~ take down R_mB2 E- I8 q4 M! Y' X
wait for e 10 min& {1 w. N8 o2 {1 a
bring up R_mB
h: m( x8 R* _# F% L end' ?( [- q2 C$ a! o X Z# z; Q
end; M$ u% \* X) I0 T: H
' @8 j" j9 s2 ~8 Wbegin P_mC_down arriving1 y3 ~7 i5 i/ p( v
while 1=1 do $ g% l/ H8 ?" P6 \- p* I( J
begin
4 V3 `8 H/ z9 Y% g3 D7 O wait for e 230 min, d# Q5 [6 u1 B6 }
take down R_mC
$ s4 Z9 U _. ~% a+ y wait for e 10 min, |1 Q. N [2 j( w# \
bring up R_mC
& ]. I1 ^4 J, B end
' ?, s, B- ?% K3 @end
2 D* T! p! |4 ^7 O# R
: f: |% {% g# V( [! M6 f" J: [4 l) Mbegin P_mA_clean arriving
( x8 N: B# ~/ m* C; v while 1=1 do
) D; p' g/ c4 {% G7 G( V begin
; Q8 m( T7 |5 L2 [) P& { wait for 90 min
2 n/ ?( J5 q- s. y/ {& y; G take down R_mA
! S7 F0 H* L6 ~" V% f7 x wait for 5 min
. _3 u$ l7 a# ]6 X bring up R_mA
( ?2 Z7 b. O0 N# F- A end6 P: Z+ T0 l0 p
end
4 Z F I- w# X$ Z: |2 Q2 l: j6 w
, g. C9 h5 i2 I7 H6 c0 Mbegin P_mB_clean arriving
/ U* }& [/ Z& A) o1 m while 1=1 do. D+ e; b4 R; q
begin
9 y2 g5 E# P* A N0 g" w' } wait for 90 min
' i4 v4 A, T4 X' w% u take down R_mB
0 h' ]7 }4 }! n* [& r7 O- d wait for 5 min- S7 |6 }) i T# E5 h9 B
bring up R_mB
& K! v- e( j/ F) _ end( _* V3 f( c% I* u- f# m
end
4 V2 E- ~9 H. }# l$ u; @/ |
& k, O' Q/ z" C! o' z* vbegin P_mC_clean arriving
$ @* w/ h) f4 X8 B) Z$ D while 1=1 do
- c6 c r/ [0 q: t4 C5 Z1 m1 i begin( b7 Q% g! r. m- i
wait for 90 min
7 O( N4 u, x, a; [1 ~0 d: ` take down R_mC/ \6 m0 h S- |, o2 \
wait for 10 min: Q9 x+ @: ^& [6 Z1 I
bring up R_mC% ~) i$ n0 m& p# C% U4 Z
end
* X; @/ G9 v; }+ b( C( d9 B) Z1 C/ _9 eend6 M3 G9 F9 V7 n8 _* t G
----------------------------------------
/ u, \/ t1 k0 V% M8 V7 _ . n. y7 @5 e$ d4 M+ N
Exercise 5.9
" E$ n0 W8 p7 v0 C! W' D/ R) ]4 a8 t1 m' }( J5 E
7 `/ I! h) r+ f2 U1 `& p
Create a new model to simulate the following system:
7 B% W! w, D5 j8 L7 }5 [Loads are created with an interarrival time that is exponentially 9 P. v# Q4 U- D
distributed with a mean of 20 minutes. Loads wait in an infinite-- b y4 |: s7 }: n+ A1 k3 i" |
capacity queue to be processed by one of three single-capacity,
: O- V; r. I) x" Jarrayed machines. Each machine has its own single-capacity queue * j' d( t0 v# P! G
where loads are processed. Waiting loads move into one of the three
Z! l& o6 j* |5 H% j8 ~! Yqueues in round-robin order. Each machine has a normally 7 e( B8 S" T4 g4 H! p( o9 T; H
distributed processing time with a mean of 48 minutes and a standard
) B# U R: K! T# x: j/ L8 kdeviation of 5 minutes." J! d( d- K' J. ]) C0 v: w& b
The three machines were purchased at different times and have
: V5 S1 h1 [1 Z' u" }0 |* gdifferent failure rates. The failure and repair times are exponentially
. K# Z6 I' \ [6 ddistributed with means as shown in the following table: / Q4 t9 d! R4 V0 }
Note The solution for this assignment is required to complete
6 o# M0 F2 u& G0 H% Y Rexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ) S9 t4 I6 a$ p' @, T
your model. 8 Q# X2 A- F l0 W
3 k% B+ X( g) l/ J. b% w
MachineMean time to failMean time to repair
! A1 h3 h& s! \. o7 h0 mA110 minutes 5 minutes3 @* a. x5 R. q
B 170 minutes 10 minutes
8 f: N& ?7 \9 M2 e6 w% s! d7 vC230 minutes 10 minutes9 |2 L u5 U C+ r# ?7 p% d5 Z
/ ^% L: ?. {7 S7 HThe machines also must be cleaned according to the following
# p, @$ C" z! G bschedule. All times are constant:
5 c0 R$ b7 M1 R5 L) y, k
) x: H" E2 [# p# hMachineTime between cleanings Time to clean
{- H4 L5 Z8 _A90 minutes 5 minutes+ v$ E, M2 M" L6 D- ?/ L+ a5 A) G+ ^9 M
B 90 minutes 5 minutes3 V3 |0 G4 e/ Q( C+ y
C90 minutes 10 minutes
) N% r: D% R$ y8 ` |# t9 v" T6 z! o2 h: P% g4 c5 m
Place the graphics for the queues and the resources.
4 _( W( X) j3 `" O# kRun the simulation for 100 days.8 b) U7 F4 H- v: E) f
Define all failure and cleaning times using logic (rather than resource : d( i2 ]: h& E' N2 C0 a5 B: w
cycles). Answer the following questions:
; d! v. ?0 A! A) v) ^9 k2 d# `a.What was the average number of loads in the waiting queue? _! M6 n. h: O7 N1 C6 [
b.What were the current and average number of loads in Space?
! H$ G1 ]% {3 t8 ~7 Z5 o& XHow do you explain these values? + O8 P! T) F/ H& g3 v
|