本帖最后由 GJM 于 2009-12-5 21:43 编辑
. w7 X& k M. _! o: X( D; i/ U% R6 `1 z( U; f$ j% H
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去# a: R$ ^( c5 X8 w7 B7 U
& W' [2 t/ o; m- _/ }' I
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!9 K% t; z+ R* X) Q2 u% N- w+ \
. C2 C, S/ e+ f
--------------------------------------------
6 M) ?! C' @0 @5 g8 G, C" C0 {begin P_something arriving
/ O; P, m" ~5 G" X- k4 x6 n) ^0 M move into Q_wait8 d; Y& r0 T" s; m; R+ Q$ F
move into nextof(Q_mA,Q_mB,Q_mC)
' u* j# ^& N5 X' Q1 }7 v use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
" `( u+ @" l5 J% q! k8 n C send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean) g& O, R8 v: c6 }
send to die
0 o4 p) V* |8 y& Z# K6 [/ C9 Z, X8 |end
, Z$ F0 J {; T; p+ |$ S # z. r- b& e& O3 N
begin P_mA_down arriving( W5 b" R% _3 q6 S& z
while 1=1 do ; X" J3 {4 _0 H0 H8 b3 C3 _' \& K4 q2 d
begin$ ~ |5 A% q: {" K- b& i
wait for e 110 min5 t7 k" v( ~& `
take down R_mA
' z: H! Z1 j+ K0 d4 l% B wait for e 5 min
1 V5 ^4 Y! V/ z( A. p, E" } bring up R_mA
% W4 V$ S! \& Q& K! C; G1 _6 y end
7 g2 q' R, j: w5 V) Aend
7 c1 [. s0 j- V* O7 N" i
" M* x, p! K1 ~0 O# S" m: ebegin P_mB_down arriving j* s1 D( }: ]2 N
while 1=1 do8 Q; K! j8 B5 {+ U5 g2 ]4 s
begin
) b/ n8 X) I4 o1 I wait for e 170 min
( J/ X$ e- R4 x/ q7 T0 }0 Q7 | take down R_mB
; P, C$ D& p& }6 d/ C7 S wait for e 10 min
% d3 t/ U4 S) ]$ B bring up R_mB) J+ c. n& y/ P5 m* F
end
6 t2 N; R7 H4 S% nend
3 o- ^, s7 p* u- X' _ ! w' L! c$ O" }. R3 _$ Y9 t9 [
begin P_mC_down arriving
9 x2 ?; o7 D/ A4 a while 1=1 do & n! E' W) G3 x- f# E/ ~5 T+ q0 v: @# f
begin
. ^) p% C& |# d wait for e 230 min
/ ~" V8 S3 ]: S! t. r! G take down R_mC9 N! a$ o: Q3 I
wait for e 10 min7 A5 H, D4 [3 B& l" M' s+ F
bring up R_mC
; ]- f+ o; v; E M L# V9 v end
! V: d# ^2 [# Y; j0 H2 z; Zend# j/ U9 C; |1 m
: S- I @) r* Z' F- o, K( Y7 k
begin P_mA_clean arriving: J) n1 o0 Q! J! J
while 1=1 do, u# _( a o# \
begin
# b6 T: t8 g) a* Y @9 }3 H wait for 90 min
! v8 E. l* G; Z$ K/ y" P" R4 o+ Z R8 u take down R_mA
9 ?% ^) j+ |& y, \! W wait for 5 min2 m" R+ [1 J5 o% Q; N; m1 G
bring up R_mA
+ o" L; g, o1 Y/ ?, Q end( f% ?0 J5 L# u/ V! C
end
/ z- Q3 r8 N7 G" E' O7 _1 @ v( f1 E6 ? v9 n5 H& f' r
begin P_mB_clean arriving m6 G6 r) V3 o: b8 u
while 1=1 do
& m5 v+ O& H$ ]- @6 U$ { begin
5 S8 W X* U/ ]( t8 {. T$ ?7 ] wait for 90 min1 `+ Q2 l- {9 }$ C
take down R_mB8 H8 G6 ~3 J! Y: ]9 `- m
wait for 5 min
( v0 [1 ^: C v& x5 I bring up R_mB
4 `7 a/ @% F. h x% I0 S% h! v end* K# t4 H# ] D+ V
end* `0 M" h" G7 a
" [6 {7 l! J- b2 p- D ibegin P_mC_clean arriving
" A" _2 t, P$ `8 U" x* T while 1=1 do
3 p: o3 H V4 A# O" s0 c begin
# B( @5 N9 U9 ^* ^7 ?5 i wait for 90 min
/ i" [5 ^3 r P* e: F( }1 _9 o take down R_mC% T1 E& F o0 ?
wait for 10 min' ~6 M/ m8 T9 G
bring up R_mC' |7 ], ]3 }4 |) ?! d1 t2 g1 d: g
end7 W Z1 F# L. r8 _7 d, ~# p
end
2 b! J% I" O' y F& P' d' `' g; n----------------------------------------/ x& t' z; `% m
, ^' Z0 Q5 T( I+ OExercise 5.9* J7 Z0 O7 v3 O& [- Q6 l
; ~. e' C% q& \& o B. @: A- Z
9 g, J3 y; o! ?2 b0 WCreate a new model to simulate the following system:
" q ?5 x/ R3 P5 y6 E3 GLoads are created with an interarrival time that is exponentially , E' K8 z! m9 R9 |
distributed with a mean of 20 minutes. Loads wait in an infinite-6 k$ D) l1 F4 |5 I; a4 B
capacity queue to be processed by one of three single-capacity,
/ l7 m8 H' S1 m$ Tarrayed machines. Each machine has its own single-capacity queue
- Z$ ~8 n1 k3 N0 s1 w; A6 Pwhere loads are processed. Waiting loads move into one of the three # c" V L; `' `0 r# a U- i
queues in round-robin order. Each machine has a normally & Z8 [7 l# {- c" m# B. l/ y
distributed processing time with a mean of 48 minutes and a standard
0 E( }0 e2 q7 ^& k1 ?0 ndeviation of 5 minutes.9 l* W; V" V' y3 W) h) R p( B
The three machines were purchased at different times and have ' |* F" V* p l! T7 u0 h
different failure rates. The failure and repair times are exponentially # X5 K" m7 e! o t6 K: r y
distributed with means as shown in the following table:
5 [2 c! q' A# U( G! oNote The solution for this assignment is required to complete
+ q. t8 l. @0 Sexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
. j9 e. I, K3 v D+ `your model.
0 y3 Q* K: T( H9 R3 q6 t, v! z2 w7 O/ x( n& c* t" ~
MachineMean time to failMean time to repair2 u# }& ~ N! X, X1 w
A110 minutes 5 minutes
1 @- Q& `7 w. ~2 C& s4 n* DB 170 minutes 10 minutes
' E! v% E' S8 ^) o* EC230 minutes 10 minutes' K* u9 x1 u: }/ Q, o$ K
' j. Z: m# E+ e# n! z) D5 j" ?) @The machines also must be cleaned according to the following
( u) m8 s6 F8 Q: B! bschedule. All times are constant:
2 ^8 X; q4 e% \1 n, J: _+ s
( z T; s# i! YMachineTime between cleanings Time to clean
: E, p, A9 e$ A3 ]6 f* }A90 minutes 5 minutes
N. e _0 b( ]. JB 90 minutes 5 minutes
/ I! M/ l& f1 J @7 F! [C90 minutes 10 minutes* O2 M) V" w+ Q7 Z* f0 {
! I5 M5 p# x) y9 M( O7 P2 [
Place the graphics for the queues and the resources. ! m \& v/ ]) q x* R- G( }
Run the simulation for 100 days.6 N3 O: T5 i/ L( N4 R& A J
Define all failure and cleaning times using logic (rather than resource
$ J6 p5 Z D1 V* C1 ?cycles). Answer the following questions:
& F0 | m, U$ Za.What was the average number of loads in the waiting queue?
/ k1 I, `0 O2 O) f8 S, q- yb.What were the current and average number of loads in Space? 8 g8 q. _6 b8 K+ [/ {7 |
How do you explain these values?
P% H+ c) h9 H6 E& b$ A |