本帖最后由 GJM 于 2009-12-5 21:43 编辑 , Y6 p9 |2 m; h( N g$ E$ W0 u
3 O6 R1 Y: ]7 m; ?底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
. O1 d& Y( q4 n1 m2 J' V
( M4 C" j9 h3 Q4 x- @$ S0 r- k. R不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!% w# a8 T: h5 l) I0 `
; G& v6 O m2 n) Y/ E
--------------------------------------------
- I, k( ?$ D/ {' ]begin P_something arriving% {8 A7 t2 R$ J
move into Q_wait
7 m, x% q& ?8 \; L" c move into nextof(Q_mA,Q_mB,Q_mC)8 R! \$ z5 ?' _( L D5 C
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
. Q! C4 b- S1 A/ |: Q0 l send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
# I: e( X4 \3 ?$ @; s7 X* \ send to die
: z7 O" i- p( M/ V \* I f% hend0 ?! U+ W. M! P& `. }6 b9 i
7 ^6 m5 M. c0 Rbegin P_mA_down arriving3 v+ m; Z, a N$ D7 |' i
while 1=1 do ; f: ?6 U& k4 J' f8 \! p
begin& c7 X8 I5 v% M% F' Y
wait for e 110 min
! H/ g* F8 j. c, ]% j! K4 b take down R_mA" |) C! e8 O8 _/ ]6 Z5 a4 G, x$ l
wait for e 5 min; l% y6 z& F6 W2 R3 F* r
bring up R_mA% M+ @9 U3 P( L2 \
end
, O$ x( C# I- d' m) M4 H3 bend
" S# P$ y6 |! y& |% C
6 u# T0 q3 A! `begin P_mB_down arriving
7 b6 l. }( h6 r) r9 _3 ~4 X' X$ o& p while 1=1 do
* ^+ i; |1 A, s8 g5 S begin6 q) h6 n: Q" X! R1 b
wait for e 170 min6 f/ f: z7 t& ]6 q' B
take down R_mB
* Q, U$ W5 a5 w- f! |2 n9 q wait for e 10 min1 u. B6 x! ?, H: e3 X
bring up R_mB, A9 d9 ]3 v _6 a# n+ }2 u* a9 D
end
A' E# [; g |: \+ t9 G" Bend
_5 ]# F2 w s3 W5 J 5 @2 p% \# k2 q% h! }
begin P_mC_down arriving! A1 @7 X. N2 s2 ?* i5 K
while 1=1 do
' @8 B3 y6 y$ k2 t begin
3 x2 X2 y& r) S# l# b wait for e 230 min
# j1 B4 Z; u& W8 ] take down R_mC
9 \# p% V0 `% w G wait for e 10 min. g5 m* [5 U" M% T1 q0 I
bring up R_mC
1 `3 t. x+ e- p0 [& R end
. {3 q' O/ D4 a0 Q6 z. Dend
5 p( P; Y9 ~% D1 {+ o/ K : \& `! X1 D/ c# K; H: l; u# V
begin P_mA_clean arriving* M, s1 ^* P$ P; X5 @, {
while 1=1 do
) H8 v+ _, L3 `7 p begin* ]! W" E! ?, M
wait for 90 min
1 S- l8 q, D9 R; c4 w" T, ^ take down R_mA) p7 Z( T! {( J4 y. J4 v$ r
wait for 5 min
2 S1 M/ l9 O# b' o0 V bring up R_mA
1 b0 o1 [. M8 c4 v end' B9 }* E) R! F7 l6 D
end
& d6 x5 u; M5 }9 r# u/ J
2 }2 }1 P& C4 P* z: O( i! @begin P_mB_clean arriving
: R4 Z0 Z# }& f8 }7 M8 t- k8 W while 1=1 do
+ X& ~+ a) ~# s" g begin
" @/ ?; g0 ~% h4 I1 m, d wait for 90 min8 Y6 |- g* k! @9 ?; `. p! q4 }+ F
take down R_mB
$ E0 Z# ^: U. T. R9 A! _ wait for 5 min3 h8 x9 M0 A" Z8 p6 h
bring up R_mB
: H* D0 h+ `0 Q0 o+ L end$ C. w+ v8 y: D ?" B/ g
end/ v' H8 t' P$ E5 J
% o* i: c6 K7 @! A8 vbegin P_mC_clean arriving
|2 q5 ?. v" h( C7 B/ h$ H while 1=1 do2 }9 k% s$ l7 ^8 n- P: D8 _" J9 w
begin1 ^: r: b" s$ ^. m9 q' o8 l T) k8 g
wait for 90 min7 L! K- n$ ?5 U- ]4 U1 m8 l, E
take down R_mC. W4 k$ T& }3 ?$ M' B+ ~
wait for 10 min
; W; ~; D$ V$ e) r, i+ r bring up R_mC' \$ e/ }+ T+ d# g( V: c
end m4 P. O& s; a T, S. g7 ?* W6 s5 E
end
/ j: M* O4 M, ]$ t4 n8 H3 U Y m2 {----------------------------------------
$ K+ Q6 C _% Z7 B0 w; U / d: K) M& O1 F8 {# ^$ u
Exercise 5.9
) A: g2 j& ?( Z+ ]4 Y) ?! {3 h4 X5 b7 n* l
% t4 `1 X1 m) u0 y; N3 P% K
Create a new model to simulate the following system:) i% B7 c W! o8 K/ S& n! D3 b! y; ^( t
Loads are created with an interarrival time that is exponentially # D4 q4 V9 g: A. O2 H8 D
distributed with a mean of 20 minutes. Loads wait in an infinite-
( P7 q5 K i) W, o$ }- Rcapacity queue to be processed by one of three single-capacity, + W6 ~+ h; ?( Z
arrayed machines. Each machine has its own single-capacity queue 1 L" G' u% f' e6 B7 A7 ~/ X: v2 z
where loads are processed. Waiting loads move into one of the three
- }- W) E" y# h, h0 C' zqueues in round-robin order. Each machine has a normally ) L% D% U: [0 p- F
distributed processing time with a mean of 48 minutes and a standard * D, d! c- e& c6 V7 a& [/ Y9 I
deviation of 5 minutes.
5 `. u0 K0 J2 n1 I* ?% UThe three machines were purchased at different times and have
* B2 r5 E& u- Z; fdifferent failure rates. The failure and repair times are exponentially
5 E+ y9 [) j: C7 O# hdistributed with means as shown in the following table: 7 E0 n$ o) @& b, x
Note The solution for this assignment is required to complete
Y& @& K6 \# {4 c mexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
3 C1 F3 w! z- W& H( Y) C5 z" P( Oyour model. & @! a% A$ N, `# b% q0 e
& _ [% h# q, T% x8 n$ KMachineMean time to failMean time to repair9 ^- O1 u7 ?/ y' }! l7 L! O& U
A110 minutes 5 minutes% Z' [& z2 D1 ?) o) y
B 170 minutes 10 minutes* z) _6 k5 M" m$ `# w. n% G; r
C230 minutes 10 minutes
/ l) Y3 h% R* N2 K1 U6 [5 i
8 g& k1 c3 x* IThe machines also must be cleaned according to the following
" u5 p' X. K9 f C1 m' X& Oschedule. All times are constant: 9 l9 A% q* M' \6 c6 T8 y; G6 d- Z
! T2 n" z: u: @MachineTime between cleanings Time to clean
9 P# u: s! \' Q k' B& xA90 minutes 5 minutes* { f6 F; i9 W3 Z, v( t a
B 90 minutes 5 minutes/ ~! I+ T! U! G' R4 Y* u3 p1 Z) G
C90 minutes 10 minutes/ H4 t7 d( S& c
5 I& y3 [3 o. _3 y$ U2 @5 N' Z
Place the graphics for the queues and the resources.
: ]" l, l1 y$ d/ @: p6 q( g) p$ hRun the simulation for 100 days.
$ M4 ^" V3 f2 e) yDefine all failure and cleaning times using logic (rather than resource - u% K3 v- U }9 i8 U3 ]
cycles). Answer the following questions:! Z& s2 y0 B7 c- a1 Y( L# i
a.What was the average number of loads in the waiting queue?
; j5 ^# j. Q H- l c; lb.What were the current and average number of loads in Space? * z* u1 e( N& s& o" Q# C! O" ?6 p
How do you explain these values? 7 Y( E9 R1 m$ s, M& Y: A
|