本帖最后由 GJM 于 2009-12-5 21:43 编辑
! C9 X! Q9 }! u* \& c2 }" p1 c1 K
+ |8 S1 T1 ?2 k9 A& V7 Q底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
; m8 Z) Q# M4 O# g9 }
+ ^: i( `( l- W4 n不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!' S! e2 W7 o1 @
6 T( O* x- J) Q0 J2 n$ O
--------------------------------------------
$ X' W7 ^# R' T" K. a5 ^2 zbegin P_something arriving( |1 A+ t6 a+ ^4 L0 H: V! N9 W
move into Q_wait5 ?; Q# J1 g1 r. i u) ?
move into nextof(Q_mA,Q_mB,Q_mC)
( J$ ^& u! n) Q( H$ u% D, u) ` use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min/ e/ V7 Y! p* D+ d. I A* ]6 P
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean). P" z/ J1 ]: Q1 `/ Z
send to die
$ B. V8 [! O& `$ xend; ~- @3 K; A! h$ d% R2 h5 H* o
. `* b0 W, B- F- p# K" Dbegin P_mA_down arriving
3 M% S, ^: C2 o& y) u- } while 1=1 do
% @" @9 v% S; a" U. A1 [ begin5 [. R3 Q' V2 N% c
wait for e 110 min
8 ]5 j" R+ p! c. }9 e9 d; A! ?* Q take down R_mA
0 d, N2 T( H! p Q wait for e 5 min. E" a8 I4 r H- F! w; n" r; x4 }
bring up R_mA. m& A/ P$ E) ?. @
end
$ b6 ~3 N" ^' j/ uend
- J) y; ^3 @8 Q# e" a" @- ~ , [: r5 e- @) Z+ q
begin P_mB_down arriving+ G+ W S) v; C9 t( y' t3 W/ f+ G
while 1=1 do' a3 i: s+ S6 @9 q/ l
begin- Q0 ~8 R% \4 L5 K: c
wait for e 170 min
( i9 N7 q7 O% ^. X9 F0 E* u take down R_mB. U) P" B( D/ T* l: O
wait for e 10 min* `' L- V$ s# x9 b
bring up R_mB) M/ `2 e, _, P, ^
end$ H, `# ?+ o/ n/ Y7 H
end k) A( `; `9 |" z. X# P5 F
* D( s: I$ Z+ ]5 z
begin P_mC_down arriving
9 v7 u7 _2 G, i. K6 ?0 F while 1=1 do ! B9 D* A r1 \0 l2 {, r5 j
begin
h7 ?! }; ~- F2 p wait for e 230 min
A+ Z) O( I4 R1 |7 I+ s! b8 f take down R_mC
$ K4 |' ^6 s$ K* W wait for e 10 min* x. m0 S6 [, i3 ?: f: Z g, p
bring up R_mC
! Y" X5 g# a9 t2 e5 i end
7 P" e. a9 U; D+ s+ h8 {4 R6 hend- _1 p' R! w+ N; B* G# [2 A
0 u0 K: v$ C$ a$ `8 [, r7 j/ K kbegin P_mA_clean arriving
. N' _) f5 L' J( ~$ T3 _& f4 i, Y while 1=1 do1 R8 b5 r& x/ H
begin
' x5 N" X5 Z: B x wait for 90 min: F ]( a" J. A
take down R_mA
3 q1 e5 \0 t6 O wait for 5 min
p3 R$ }" i$ o2 C6 Y1 S bring up R_mA
, f8 S/ A* |) s/ l end
# r' O# e4 I7 f& E' Y$ y: O3 Nend
! l5 B1 s/ o! g; c5 u3 p
' N' W; i1 _2 V; A- j' Lbegin P_mB_clean arriving# p& |% ] s9 O" N
while 1=1 do% m$ L' c f! {) `$ J
begin
1 o- Y0 _* s& j% Q% m. E" O wait for 90 min
* h1 _) M& c! X* h* S( W' C take down R_mB
2 c4 J! i& L% q" K wait for 5 min
3 k8 L& U. ?" r( n; I t, J bring up R_mB
) {3 N3 f! p( k5 b; h, u M end
" X7 k9 J) c8 T; X" uend( c" @' Z( s3 C f/ h
! N' s( P! i ~4 \6 s
begin P_mC_clean arriving' X5 e4 | A; ]* r, z8 K. [
while 1=1 do
6 M. h1 n; {7 l( O begin
" u% i) s8 c2 V wait for 90 min+ j* m+ _) p. r; ~
take down R_mC3 N& c$ _7 B1 V* g* O; _
wait for 10 min
/ O) z5 Q2 \% y% T1 R) } bring up R_mC; R9 } I" i4 e. L3 A: x" h/ X
end4 k, S' Z k/ d8 o
end/ ~2 V. a" s# S# Y7 N+ k. }0 S2 }
----------------------------------------
- A( j/ w/ g& S, s
! `! m6 j, G1 r+ }Exercise 5.9; F s: m, R( H3 ^( ]( X9 I3 ~
% I% U) Q6 I( c7 J$ z$ t
2 N% U( {# u8 L3 R: uCreate a new model to simulate the following system:3 s3 H% `) H( y; d* ^4 {
Loads are created with an interarrival time that is exponentially
7 ^4 E+ r) ]; e6 a6 ]5 w8 udistributed with a mean of 20 minutes. Loads wait in an infinite-
4 n) V# h2 t# k: q, `capacity queue to be processed by one of three single-capacity,
2 ^6 U5 ^3 Q, R4 M: m9 r& B1 Qarrayed machines. Each machine has its own single-capacity queue
" H5 Z, Y( V3 L {% p/ i7 Ywhere loads are processed. Waiting loads move into one of the three
9 C* l( g J M, e" @queues in round-robin order. Each machine has a normally
/ a- _" V8 X, o; b O5 ?distributed processing time with a mean of 48 minutes and a standard
- P1 s. V7 y5 F$ g9 tdeviation of 5 minutes.
4 `5 @' |; g9 k9 z6 MThe three machines were purchased at different times and have
3 T$ Z4 B7 g, j" H1 @different failure rates. The failure and repair times are exponentially . e4 x8 @2 d* Y$ K
distributed with means as shown in the following table: ) f2 _. d! ?/ G0 g& m% B
Note The solution for this assignment is required to complete 7 W, P7 q% \3 F6 B; z
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of " K2 Z8 B1 v6 S4 ]" y' M
your model.
" k P: }6 B1 c5 C: ~; m- G% F9 r. z5 s
MachineMean time to failMean time to repair
) |. z) z8 t0 k XA110 minutes 5 minutes% G+ U8 K" i2 m/ o! G
B 170 minutes 10 minutes$ u4 _2 L) ?: Y' O8 B+ q
C230 minutes 10 minutes
2 U A) [/ N. Z1 T" N, V& R8 x: k' d" ~% e
The machines also must be cleaned according to the following ! I! V* ^! s' D' P; k
schedule. All times are constant:
* R9 }! @& w3 l2 Y
- u+ N$ M. M2 W( gMachineTime between cleanings Time to clean! y9 v- f6 ^, f0 ^' n
A90 minutes 5 minutes
/ b/ t% M5 G1 s* AB 90 minutes 5 minutes
/ [9 V9 p' n- J, ]# GC90 minutes 10 minutes
1 i' a7 N" ~; n% ^! a, Q e8 S* [' s( o
Place the graphics for the queues and the resources.
; d- _" k5 x4 C4 XRun the simulation for 100 days.
; [: B! r/ f4 j" s4 K2 p* E" _' y/ oDefine all failure and cleaning times using logic (rather than resource F8 H0 {. ?! @% X7 ~
cycles). Answer the following questions:
" t8 @. `) h4 V5 @. o% B# oa.What was the average number of loads in the waiting queue?
$ Y0 ~: B2 g4 _; i {b.What were the current and average number of loads in Space? 7 H- F3 ]% D' _
How do you explain these values?
5 a2 m- i1 y9 x |