本帖最后由 GJM 于 2009-12-5 21:43 编辑 & d: k! a2 P/ _+ Y+ Y2 P8 Y* I( D
7 S& t0 a3 e' U( g; X
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
% k# {7 O9 I+ ], T# ~$ h: G3 w7 j# H# V) w% w3 F8 V3 @
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
7 M }8 D$ O2 P) D( T4 L0 _6 r# m0 v2 |* m& M6 h: o
--------------------------------------------2 v6 I5 e8 N# x# `( R/ t6 B
begin P_something arriving; c! _4 [# Z; ~
move into Q_wait& S/ i7 z) _0 K5 J! [
move into nextof(Q_mA,Q_mB,Q_mC)
, w+ X& l9 Z+ r, R7 f* I) F use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min0 B; m' Q8 ` F: M1 A9 p
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)6 ^9 F9 r) ~+ i
send to die
6 b4 b' {( v+ H E4 l, o' O" W; e3 Vend
% K3 k5 @7 Q$ H$ A H) J Q: Z2 Y- S
! \" S' {! a J9 D! Obegin P_mA_down arriving
5 h7 o+ D; n$ J6 f+ Q M0 L while 1=1 do ! ?2 i# Z7 q; {5 J7 v
begin
6 ?! L/ s) n: P% X! N& f wait for e 110 min7 M; m5 }' I+ v5 ^! @1 V
take down R_mA
4 Z/ o! B* W( h0 q, { wait for e 5 min5 [4 D& M7 u8 X3 n
bring up R_mA/ v# K! M' n) b# W% u
end
, s# ?* [8 N4 S- d1 W# uend( {2 S9 Q( H3 v6 V: p5 h3 B
& M& Z+ F0 |4 o8 a/ c
begin P_mB_down arriving, r- @( d; P9 r& M, I9 \& @6 y
while 1=1 do
. |$ A8 e& A% Y/ @' a begin0 @# b$ _, b5 Z, B3 M
wait for e 170 min
. T2 J/ n* R0 v( c2 t take down R_mB
0 M- F p @4 V+ n$ Q wait for e 10 min
3 x% U' G D! v. i! x( Y( b bring up R_mB
/ X3 @* v- ~: g9 q- Y% f+ L end, r% z: z$ a* {) E, O
end5 l/ \# i# Z1 h1 y6 \7 x
0 D. g9 z2 @* x6 F l! w
begin P_mC_down arriving
5 q$ B" t3 v4 c# K% d while 1=1 do 5 o; |, R) v6 T( c
begin
1 `9 A& G4 R. l" T' U wait for e 230 min6 _4 ` ?- S, Q1 H! d% |8 [6 x
take down R_mC
5 z! ]. D% O: N9 O wait for e 10 min
1 E+ a+ _' {) }: ] bring up R_mC
( ?4 ?4 O7 l- H) h* h4 W* H7 V5 K end; d: H+ k' w0 m9 M: P
end
0 O6 P0 o; b+ ~7 M0 h) N9 q m
/ D, o$ \$ B T, nbegin P_mA_clean arriving' W4 I W# q3 Z4 Q: T9 X( A
while 1=1 do
3 A! b8 g9 `/ y, [4 T begin! K: j% Z3 b* |) _" Y
wait for 90 min! C1 @- i, {- z% D* `( I
take down R_mA
" l( O/ A% |$ `4 D; _3 G wait for 5 min: u, ?- f8 k+ ^$ ]( w
bring up R_mA
) m( f* G2 K# } end/ Q3 X2 t+ a d; h' j
end' r! n; Z+ m* U$ @
" ~: d$ t' [3 c3 D* B
begin P_mB_clean arriving
4 F; X! C, A- l0 e while 1=1 do
$ s6 g" G* x/ p: Z7 g3 H' b begin) T' K* d# k& g) e3 H2 @9 U3 t& n
wait for 90 min e. t$ a' c( O; X0 u: `* l
take down R_mB
( F& n, A3 w& Y wait for 5 min* D+ K( Z- n. B' {; K, A- ^
bring up R_mB4 `# f1 l$ |8 j @3 R
end
3 U0 o& n7 b; a# ]; lend3 X+ M& B* C9 l R# g! @
6 q8 B- E& l) ~1 [! a
begin P_mC_clean arriving2 a' ?( ~1 I5 d0 ]3 s# a! z
while 1=1 do" Y) j$ x3 h; m2 c1 a! v; M
begin! U/ v G! s) | t) n8 u. U% ^
wait for 90 min
' h0 m" b& |) c. c take down R_mC
. z8 _/ {$ E4 @; M+ t* T9 \& n wait for 10 min" P) H4 B6 Y. N% T0 X
bring up R_mC
. o6 A3 B8 ~. ^2 m( i$ ?$ y end m5 @8 R* y+ G4 E
end
$ D! k! o: m! ], C----------------------------------------
- I" X, e$ b; M/ F # G; G' l; K) e7 a& \; |* p
Exercise 5.9
% z4 h$ b; e, V& _0 _3 @& q4 _: ]
! T: s7 B! j, X3 G2 W8 l
( ]: b3 J, n' ]' _* QCreate a new model to simulate the following system:2 i/ ^ y& c9 p
Loads are created with an interarrival time that is exponentially
! I: c0 p8 T8 x0 d" i" S* u2 m; Tdistributed with a mean of 20 minutes. Loads wait in an infinite-
: E- z* b, k+ e- h/ fcapacity queue to be processed by one of three single-capacity, ( j8 h9 c! H! R4 n/ c! N
arrayed machines. Each machine has its own single-capacity queue
" k; x7 U% M3 V L) c' f1 x! G+ t% Owhere loads are processed. Waiting loads move into one of the three + B9 e4 }8 A [
queues in round-robin order. Each machine has a normally
, @# O J5 ^: fdistributed processing time with a mean of 48 minutes and a standard
2 g7 |) m p8 g$ d+ F- b+ Qdeviation of 5 minutes.+ k3 ~+ R& V W
The three machines were purchased at different times and have : q5 A4 H: B" j* H- ^0 c1 d' X
different failure rates. The failure and repair times are exponentially
: B) M# Q' H! m8 G) s; u3 ^distributed with means as shown in the following table: 9 R. _' W( z' H8 {
Note The solution for this assignment is required to complete
; |0 V e* w) d1 yexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ( i5 L9 l8 w; c, M4 M
your model.
% Q( f3 t2 C& J$ {: n% d/ A6 ^
V# V6 j1 I* \, XMachineMean time to failMean time to repair
+ g C4 N# [4 H i8 x0 M( NA110 minutes 5 minutes
' x: c* v9 D! t1 F0 gB 170 minutes 10 minutes
d) O1 A2 P: p) VC230 minutes 10 minutes
# i/ C, a2 z$ N [. S8 ?/ U9 F A% o1 W. L; ^; _3 X) q0 s" d) J
The machines also must be cleaned according to the following
3 |# L# V5 Z$ A$ D' }schedule. All times are constant:
4 l+ j" [2 b& W- z( {* o/ e; u
f( s. e% d! `1 b. \) K" X& ~+ rMachineTime between cleanings Time to clean
7 ~; O2 @: t. ^4 n3 ]A90 minutes 5 minutes
: H" f2 g, W; P/ W! uB 90 minutes 5 minutes) N B8 _0 C3 L3 F4 @ I9 w5 Q( E
C90 minutes 10 minutes! g+ b1 A' t5 u
- z4 a- o& r/ z& v
Place the graphics for the queues and the resources. $ }9 \) ]/ R& p$ o5 P* P* p
Run the simulation for 100 days. k& e5 V1 I" d- S j( l+ S
Define all failure and cleaning times using logic (rather than resource 5 A. R& ?- \: K, n0 h1 b
cycles). Answer the following questions:, ^: u8 Z, e& p1 u3 T" [
a.What was the average number of loads in the waiting queue?0 }! A, i/ j" F( o" z; q
b.What were the current and average number of loads in Space? & g5 N6 ]8 J3 w6 R
How do you explain these values?
, ~. |/ ?- ^' R) m |