本帖最后由 GJM 于 2009-12-5 21:43 编辑 8 K8 C0 Q8 G. k9 ~3 z# `$ S
2 c+ ~7 b: a: K6 o
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
D7 Q0 I8 G) A$ H' \' X& @! P
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!6 @5 y, t0 a5 f q1 t
5 f ~" _5 ]% G% U" m. k
--------------------------------------------1 \$ K: ]' u1 x: k0 `& ~
begin P_something arriving5 J" A1 w: t" J$ e0 M/ w' T
move into Q_wait' {+ S3 ]( q7 p, T# w% d& L
move into nextof(Q_mA,Q_mB,Q_mC)+ b. c8 C* P: C% h- |2 K' U
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
6 J! t( W2 l- x1 F send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
' U, b5 }/ U2 Z. r+ ?2 t' l: P send to die
: I, }7 w# o9 V+ b4 `end
9 a# D4 e$ ?5 a' E" [% L2 m 4 ~$ U) C* Q$ P
begin P_mA_down arriving
* h) M5 V; g- |! L9 k while 1=1 do . @; w9 D, b8 D+ I+ H# P
begin. Z0 {1 v6 K( G7 S
wait for e 110 min
6 X2 H* w6 Y- T5 X8 g4 Z take down R_mA
9 [! L' t8 d0 R( C8 H+ D wait for e 5 min4 u3 h! ~8 f- j! t: A$ X
bring up R_mA
/ ]& r- e! U6 z. H% f end
; S* X* |4 r2 Z9 n* ^3 p( Q* Send
& _$ h; J5 x$ ?4 m, c& O6 G 4 o; |- s6 x8 {; o* `
begin P_mB_down arriving
* I# J t" i( k3 @ while 1=1 do1 q* J! Y, h, x+ b0 w
begin1 q' y* C" U/ x5 \1 F4 a
wait for e 170 min
' l4 G4 V* C8 T7 g take down R_mB
9 D" U( d) F" h) B5 f& b& U$ ], f wait for e 10 min# A" G6 ?" Z7 k
bring up R_mB. D) T7 ]! k; Q. ^8 Y
end7 x: h7 ?8 Q! D$ C& ]0 ~8 X
end
+ ]" Z' W$ r- n. N1 h. v4 N" E/ C 0 k: Q! C2 i% j1 N
begin P_mC_down arriving! e9 p! R% B) ?$ [7 f
while 1=1 do 1 R6 ?3 R E9 |2 w# ]
begin4 T2 _) j, ^9 p
wait for e 230 min
' Q+ V5 ?. ]! b% g take down R_mC
/ F4 ^ p3 B% e/ n i wait for e 10 min
9 h, w; w+ @2 g; z/ H% H& k8 O! k2 S bring up R_mC1 x6 G/ L3 O( G6 A% Q4 `
end* ], ?) ~7 r# ~8 \* i
end
# P3 \# y0 R) [, B$ m% o5 V; v
! ~7 D4 D- `# j$ I9 `( Y, |begin P_mA_clean arriving5 Q( X8 d: g2 E5 I6 u J! Q, [
while 1=1 do
# m' Z4 t( v" [: Z6 G7 L$ n% Q begin9 t l8 G" W5 k' O: {5 a" c
wait for 90 min4 X5 H9 _4 i2 `( Y
take down R_mA
0 }2 C9 l/ m5 I! }2 r: j$ K wait for 5 min0 U; p% P" y- j" W q6 W
bring up R_mA. M, O- T$ d1 y& @! u$ r- h
end& z1 _. |5 q/ y7 \- `, k U
end1 T I7 R' t. z* w
4 g! d! ]# f" m0 {begin P_mB_clean arriving
' k& ]6 k' m9 U$ ~1 d while 1=1 do
5 j- x1 {5 H) C$ y- t# Z; c# l [ begin
; f/ L% M0 N5 g: S) I wait for 90 min1 t; k9 h+ N2 O- |4 A
take down R_mB
j# O( y/ M7 Z3 o& P' g; L wait for 5 min7 ^# }( b5 o/ {' c4 M: R5 J
bring up R_mB
/ B, V! J" t: F$ W# { end
" K# b; m2 L$ Z" m5 yend* t: i/ K+ x1 H1 w3 o
# [5 v5 N: T/ Y8 M" ~begin P_mC_clean arriving
5 P. ~9 P. C0 Y, K6 M, h while 1=1 do
! j( |. y1 E$ s) f1 q9 g begin
6 l3 K5 g8 v, V; ~0 ^% j6 x wait for 90 min" O8 Z' K; \! F
take down R_mC9 ~1 s( X0 j0 }
wait for 10 min
9 j0 o$ c* ~. u bring up R_mC
2 K6 x% {8 M3 p- f3 A end' \( u* j) j% { y6 b& x8 X
end5 i1 w0 N3 G( b
----------------------------------------
6 R) s( u+ i3 ?& S* z
: }& v: ]0 T) ZExercise 5.9, S: w& O9 B2 o
" A% |. q5 b# v2 p+ q( k7 B
8 S2 w5 G$ k/ W" DCreate a new model to simulate the following system:
# U7 D- S4 h3 ?# u" @8 ]% ]Loads are created with an interarrival time that is exponentially
& I: ~5 O: V: E* U" J4 {$ U' @1 Zdistributed with a mean of 20 minutes. Loads wait in an infinite-
2 I. Q9 p& o$ I4 S; `% J+ gcapacity queue to be processed by one of three single-capacity,
# Y- ]+ C7 |3 T parrayed machines. Each machine has its own single-capacity queue
8 M9 ?, e! C) rwhere loads are processed. Waiting loads move into one of the three 4 G% x$ E2 k9 P% d' l3 b8 Q6 d( H4 E
queues in round-robin order. Each machine has a normally 6 X9 \: y+ E! m
distributed processing time with a mean of 48 minutes and a standard
* b8 G' C4 a8 J Pdeviation of 5 minutes.
, a: a+ Q$ |& `5 p5 g" P' G0 U) iThe three machines were purchased at different times and have ) s7 _7 X1 D) O3 D
different failure rates. The failure and repair times are exponentially
3 M# h5 } H3 L! Zdistributed with means as shown in the following table: : P4 ~' l! Q! t( e! a' l8 K
Note The solution for this assignment is required to complete - s0 z. E8 d# k1 ?0 v
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of D$ O; j/ ?- R& ~- i+ f
your model.
7 G: E& ^4 k) w/ t* r1 G) d) y
0 k) v; d- _, F8 @' JMachineMean time to failMean time to repair
# @: l/ a) X8 J h; Z3 l, s9 MA110 minutes 5 minutes
f' t7 b, m5 W& R7 ^: dB 170 minutes 10 minutes' D! ]2 M4 p/ i& Z6 l5 P
C230 minutes 10 minutes
1 m+ F q) ^" ^+ w7 p
/ @# b( X q* U# QThe machines also must be cleaned according to the following 9 Q+ q6 ^* j$ _% e6 y
schedule. All times are constant:
0 w; z- _' [" ?1 z$ Y% o! P; D2 d3 W3 B M
MachineTime between cleanings Time to clean
9 j. j2 I# C0 a2 \A90 minutes 5 minutes; x$ V$ s3 d+ z
B 90 minutes 5 minutes
; B) ^% a9 z8 @( t! y) [C90 minutes 10 minutes8 Y4 b; f/ S2 V& i/ h6 W6 T
2 y# p9 p9 t4 R. Y
Place the graphics for the queues and the resources. ! p/ I: n, W: {6 a' W
Run the simulation for 100 days.
* w7 P! @0 W! g+ [! MDefine all failure and cleaning times using logic (rather than resource
$ J! C; C/ m5 Z! H/ Dcycles). Answer the following questions:' ]# U% V. X" \( u
a.What was the average number of loads in the waiting queue?
' S9 F2 C; y) u* I" e) ?, [/ Vb.What were the current and average number of loads in Space?
+ z1 `/ J. h5 y. m: R1 ?How do you explain these values?
( C8 c9 W) J& G, [3 m; d- Y. B' c |