本帖最后由 GJM 于 2009-12-5 21:43 编辑 : T8 @ n( j0 P( `9 _5 s# X
' z% \) u3 M) F' N1 |6 u9 b2 O3 n
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
9 G8 X, Y) c- g. c" B& J1 `4 U$ i1 T1 P
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!- c/ a3 Z6 Q" i& B: o8 ?
7 P& {& D8 M0 M/ }, d* U- P' c! o--------------------------------------------
. Q% M t* N: _8 Tbegin P_something arriving
( P5 Y; y9 G. U! I2 q move into Q_wait
# Y: o& v2 \( ^8 A$ m' p+ C2 H move into nextof(Q_mA,Q_mB,Q_mC)# c) V! ?2 x) m. z; ?; s
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min: R) N. v" ?1 H2 L3 N P$ k, [
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)/ h, E; H5 l" ]
send to die
$ {6 w+ o' ~8 {3 x1 Z+ D; dend' Z: l6 {" n$ {* x" K2 ]0 `
: j# O/ f2 J( f: u' fbegin P_mA_down arriving
6 G( V3 ^" V) y' J0 N& Y while 1=1 do
& T7 u7 u5 u' P. \ begin+ r( r- F g( u6 C1 [
wait for e 110 min H, A0 [( t: ?( h! E3 U
take down R_mA
! g' }0 O0 k' X" q wait for e 5 min
3 \% D$ g Z/ }8 ], W bring up R_mA& ?- G4 X4 d$ T7 K% J+ ^
end' ^9 T& T! e7 D
end
0 h: f( A' y2 Z5 U
! n# n$ n) p% Q+ K6 ebegin P_mB_down arriving
5 \( _$ D, G G+ Q: o, y while 1=1 do* J3 P& f2 O% X; ^+ e: ?# Y1 T
begin# K( G* V, O# [% n
wait for e 170 min6 b" b$ [/ I6 q8 E; X
take down R_mB
6 p) F0 [! `+ F* W, j1 ` wait for e 10 min
v6 F0 R) c4 f; @( l bring up R_mB
* l. q9 U, U$ Z, k7 N) W) B end7 o, x/ U: z' F, h9 Y( p
end
% {& E+ {# J: `- G1 l+ g, m ; e9 R5 u7 K, G2 d5 P5 H. S" ?8 O
begin P_mC_down arriving
" j; \+ M9 D9 d; | while 1=1 do $ `, `+ j2 ], _; x) Y" N) ?. d. j
begin
' J/ J$ j: e- N# \ wait for e 230 min
" s4 [8 O8 u: g9 q* C take down R_mC$ f) ^2 ?) \* \% x8 X
wait for e 10 min3 O( t& T; D* _5 f/ P0 S0 Q
bring up R_mC- D0 ]4 K' q# J! ~& N! x! [
end- ^& Y! W: j) Z9 r" M
end
1 H( _" \& {( E- S# ?3 P' D
7 L9 w; N0 L" E* b, d5 `begin P_mA_clean arriving6 e; u" ?7 g# a& {7 h+ u7 k! ~: B" F
while 1=1 do
]* [- e" Q0 Q. [$ Y4 m: x begin
' u& V% F) x V# d2 y+ y+ D4 Y wait for 90 min6 ~& |) ^1 d# ?- \9 M- F6 {; D8 P% l4 J
take down R_mA* l- B5 ?8 E' I1 \, S3 X: U" Z! x* U5 Q
wait for 5 min, B6 ?; A9 Q5 \% H# d6 R" A8 U
bring up R_mA
9 d- h" Z. |/ s/ k; G- c2 \ end
/ ?0 t6 I1 x4 X2 }" j3 Z" ]9 kend
0 V& ]& `/ G0 Q 7 W; ?5 Q5 V4 @2 Y8 f- Q
begin P_mB_clean arriving
) L# r6 C3 R7 N+ j9 K' I" O while 1=1 do+ X+ ~/ g: d- i" ]$ m
begin0 ?4 ]. I0 ?3 B8 d* w* T
wait for 90 min
3 `+ d( f, J3 y$ X) C take down R_mB
; ^1 b4 y: s' R3 _ wait for 5 min
3 W. S2 k$ j; n bring up R_mB* O0 g' C l% n( g
end
$ D' N; P% G) |# R3 E, Iend: d+ G6 M% x1 ]+ e t
1 B4 I" w8 i: r: V$ q% ybegin P_mC_clean arriving0 r1 E+ M! `4 s. i6 B: e6 E
while 1=1 do
. G. F( D( G6 n begin* o2 S- S" u' x4 Y, x0 e# U
wait for 90 min3 W! N& P# ], v2 {6 ^% `
take down R_mC
! N9 N) d+ l0 L4 Y& n* [% t0 c wait for 10 min
* }! c/ s8 ~! F/ R L1 l4 L bring up R_mC/ x0 l+ b$ D) V
end
# y0 X# C- D, ?- X \* ]1 J8 T( p2 gend
0 J6 @& f2 f& ]7 i z" k. I----------------------------------------3 r. ^3 | D% P+ g
/ J( s' ^- N9 S N
Exercise 5.9
' |- Y( ?' h' E% u% }& t; x/ o1 r- |4 `% [. M! z
2 }: s7 O7 [3 W X2 z! m4 F6 yCreate a new model to simulate the following system:' {& D9 ^/ N# q; S0 _, L
Loads are created with an interarrival time that is exponentially $ ^( Y/ R- y7 @. U7 e l
distributed with a mean of 20 minutes. Loads wait in an infinite-
9 _6 N! n0 O# Q3 Q+ A. ucapacity queue to be processed by one of three single-capacity,
7 }' k1 \- m$ S6 jarrayed machines. Each machine has its own single-capacity queue % P W6 a" d! f+ J' ~7 x c! v; c
where loads are processed. Waiting loads move into one of the three
/ V- ~: n' U8 d8 S+ Cqueues in round-robin order. Each machine has a normally ( I: w" l6 J9 C; S! F
distributed processing time with a mean of 48 minutes and a standard 4 H$ I- O% E5 u) Z7 z* A" O
deviation of 5 minutes.7 C. D* i% e" b, n
The three machines were purchased at different times and have
$ d. i" ?- m3 _: _) O1 R( c; [: X. ^different failure rates. The failure and repair times are exponentially
/ V# n5 @' j# f# [$ g: Ldistributed with means as shown in the following table:
- q0 B( e' g$ s0 B2 O* L4 ^Note The solution for this assignment is required to complete ) ~+ a G) N) p _) B
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
: ^* j/ b x* R- uyour model.
/ M% e9 } u0 q5 u7 g" |, Z% d* T2 D2 o2 o$ `# _
MachineMean time to failMean time to repair6 u% ^9 X, r: `& K5 a, |9 z: ]
A110 minutes 5 minutes
( h; v9 v P2 E4 b2 I( yB 170 minutes 10 minutes
% T2 M- w; ~6 e+ s- b1 nC230 minutes 10 minutes
, S$ t% c% |& l) i$ g/ Z
1 C- o5 {6 r" o) p0 QThe machines also must be cleaned according to the following 9 M& Q7 ~ D, G* D
schedule. All times are constant: - g* U# `6 C0 \3 f% u9 t
9 {, \! U7 O& j# P, i2 R
MachineTime between cleanings Time to clean" V4 m9 B9 M$ `; U
A90 minutes 5 minutes% l* h' D' n! Q- w; [7 E
B 90 minutes 5 minutes
$ d4 _: F: ~6 m, H: n" eC90 minutes 10 minutes
9 c6 l3 w! Z X( a$ u) V; u& `5 R" N3 ]" d8 }. z8 C
Place the graphics for the queues and the resources. - [8 p$ A* I( J5 ?* j
Run the simulation for 100 days.* ~# ?( ~. b! ]6 _
Define all failure and cleaning times using logic (rather than resource
2 H3 \- V5 Q% o1 f T5 u( dcycles). Answer the following questions: S- R3 B9 W/ }- d) \/ Z* S
a.What was the average number of loads in the waiting queue?/ r: ?$ Z4 F) x5 ]
b.What were the current and average number of loads in Space? 3 \3 F3 ]9 m+ Z! w0 R
How do you explain these values? ( w7 |8 h' H% ?- S2 I" y4 F
|