本帖最后由 GJM 于 2009-12-5 21:43 编辑
# T: o# J. U! M) }
, ?8 ^, P! v" d3 P$ j底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
. ?9 r; a' |2 h) E" ^# r1 M
- E% m7 T7 H, e6 D2 W% j不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!1 j, f) A+ B: ]/ k
) }; A5 E$ @0 d2 _7 g--------------------------------------------" p4 N# }( `6 g+ y( M7 y
begin P_something arriving2 b% m9 A/ Y" O5 k0 o+ K( U
move into Q_wait
% t8 V, P; b0 P" {4 M/ t8 c! X move into nextof(Q_mA,Q_mB,Q_mC)
, C8 m( U' Q" y8 h9 l- R use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min, |* ?+ f) ^& F0 u6 B7 o$ ^9 H
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
$ {6 o8 C0 x+ t; [9 G# i$ f send to die
; D2 m* x: U9 p& Aend
. |+ F( u2 @9 w+ w5 a% x8 \ 1 }& t* c. J# O6 b
begin P_mA_down arriving- [: A( h1 k* j. B5 Y$ O
while 1=1 do 4 M% w0 U8 S; ~6 o, v: U$ E
begin$ ~) ]8 h+ t) e3 u7 W- P" J" b( E! v
wait for e 110 min
- _ Z' ~( y/ y7 ?4 U take down R_mA
' S# s. B- P0 q wait for e 5 min5 g R1 y' T2 B$ @
bring up R_mA
3 c. @) m4 |# g) v6 `/ v3 |3 g- Z end
" r j: H. h! E$ v( G {end
* ^! s/ Y8 U: }0 X3 g, `$ g! y
5 v) |2 T+ |8 ~, N8 U3 ]* Lbegin P_mB_down arriving6 Q$ z+ x7 t7 g6 m H) }
while 1=1 do: z2 V8 q; @9 H% U
begin
1 G+ ~! {/ t: h8 w wait for e 170 min
' J: T) S/ t3 M take down R_mB
+ _& T, ~& i0 r& K8 m wait for e 10 min
+ N* T+ X7 y: x bring up R_mB
( A2 B: L2 F: B" a6 C7 N end. {) J; \7 N2 S0 _. j% n0 A
end
1 ]" m# J5 J; N9 d$ z 4 n2 A: r; d5 @. ^
begin P_mC_down arriving
6 x! n; T0 _8 A- b( I while 1=1 do + q# R3 ^8 u& x" h! I+ e. p
begin# j \: O) A" j6 H4 s; K' e
wait for e 230 min5 L" b1 ^$ y6 m. V$ r
take down R_mC
0 a7 _$ O/ `/ Y% K7 e8 t4 X wait for e 10 min
" E2 l+ g. P! e- u4 D bring up R_mC
: v1 e# w4 F* x- d" r end& D" u6 I& q A0 l+ \9 @; t2 D' ^
end$ k; v+ Q. A4 F2 ]( X C1 P4 F7 X
_: G: ^* d) {begin P_mA_clean arriving `6 e L/ c' N7 ]
while 1=1 do) {- J7 S1 C& ]) ?1 }& B
begin
. a4 B% B9 B$ Q wait for 90 min4 z0 l! z) s, r3 f
take down R_mA
( V- M* _% I G wait for 5 min6 i/ [$ ]1 X( p1 y
bring up R_mA/ ~/ o1 `9 ~5 f1 N; H4 g1 \
end
! y6 r2 s# {" D }- pend
# E# h$ t2 L8 u$ ]0 L( b4 E: p
* {( R4 s" b# M1 Nbegin P_mB_clean arriving! T& i) ]8 E, Y7 ^# K
while 1=1 do# H0 r* y% h2 i
begin
' l" g! L' m% r wait for 90 min# a# ]- J1 ]/ N
take down R_mB
7 X5 B2 D- ` E! f! S6 H4 _) S wait for 5 min, i$ J0 x( Q) _# \
bring up R_mB
0 [" S8 |( D( l5 R' D0 K end0 M, X$ ~* z& u' S `. W
end
0 E% i( g0 V8 H$ C) e; d
2 j- V' o0 {+ R% ~% |4 v4 c1 X) Ubegin P_mC_clean arriving0 P2 M9 O! ?- U$ W; s/ x
while 1=1 do
1 U5 m# r4 J* z, t5 I8 a: ? begin
0 M2 q# A) P' o+ O wait for 90 min
6 D! G0 x9 [/ n, X take down R_mC8 B, e1 v1 p/ i4 i# S
wait for 10 min
/ q6 ?4 a# \7 X: X7 G3 [$ e bring up R_mC: `& P% B9 u& d2 u1 S: }) [, b. a6 _
end
9 o( |7 S5 {# d1 @! Y; }end5 l) s8 o% `- W% @* N
----------------------------------------- t5 M1 F+ @4 m, W
& c6 G0 W) C3 s0 \$ C
Exercise 5.9
) [7 `/ g9 X3 Y
# F y+ M' r1 K, h6 _
4 r U" b3 L. i# M# B( KCreate a new model to simulate the following system:
6 Q$ m8 u- x* s3 [$ p6 yLoads are created with an interarrival time that is exponentially
$ ?3 f! a! W; t. ^6 cdistributed with a mean of 20 minutes. Loads wait in an infinite-2 Z0 F$ f- ^& s1 k! v! D& `1 j8 A
capacity queue to be processed by one of three single-capacity,
$ G: G8 K% i# Uarrayed machines. Each machine has its own single-capacity queue
7 r: z& L6 P- Wwhere loads are processed. Waiting loads move into one of the three
6 \" ~' i3 r$ ]( h; s0 V% tqueues in round-robin order. Each machine has a normally * F5 }3 p) `) ?0 P
distributed processing time with a mean of 48 minutes and a standard ' n7 Z+ p7 f1 {. n' ~
deviation of 5 minutes.9 G Q& z) k( y0 m5 u
The three machines were purchased at different times and have ; c" j6 y0 ]- Y, b
different failure rates. The failure and repair times are exponentially % k0 i& M1 J, H, h/ b
distributed with means as shown in the following table: " |! R+ ~5 M) f1 a8 ]; p
Note The solution for this assignment is required to complete - F6 b7 e! P8 d3 Z" L% }
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
8 n7 d1 X& a9 t5 ]' Vyour model. # t5 k% H4 Y) j/ z$ M- Q( K) L) m" D
* f( c- N# _7 l7 ~4 t) oMachineMean time to failMean time to repair1 E' \4 _, ~& S
A110 minutes 5 minutes
! c! [. B, M+ \/ T" ?5 [B 170 minutes 10 minutes5 G& ~* k- u/ |$ F% o6 n
C230 minutes 10 minutes+ P4 e5 F- R" K, A+ L( f
. f% v6 T; V! H* `5 ~3 `# I4 T
The machines also must be cleaned according to the following 5 @8 z2 @5 ~5 I4 U4 C9 ?- Z
schedule. All times are constant: * J1 N# D, D9 ?+ i; l7 f6 H
' r+ J+ q. t W& C! b$ i; gMachineTime between cleanings Time to clean
2 v+ G! G5 D9 t% hA90 minutes 5 minutes
/ V% @5 T1 U2 ^6 c. u$ W5 ]B 90 minutes 5 minutes
" |# I* C8 W( w) B. C& Q3 v, dC90 minutes 10 minutes
8 s9 E4 u& V" H% b
! y0 S$ F) D! i5 H/ qPlace the graphics for the queues and the resources.
; f' l* l# N. W# x' G8 iRun the simulation for 100 days.8 [ p. [! {5 I) T+ H
Define all failure and cleaning times using logic (rather than resource
% \ t9 Q' ?& g% ?cycles). Answer the following questions:& P7 x% b7 c! G( K* G A
a.What was the average number of loads in the waiting queue?
5 W6 y& Q2 B8 z: @, }9 ?b.What were the current and average number of loads in Space?
8 B: [2 k0 \3 z# nHow do you explain these values? $ w n! D& K% k3 r1 k
|