本帖最后由 GJM 于 2009-12-5 21:43 编辑 ) H; w6 W* C6 b6 D3 P0 p
* m" d0 q# [$ b5 \! f底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去. K+ g; q6 |" j3 N* L2 V
4 D/ ~7 l. [( H' c& M+ A' {7 C& C, x
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
' [" M: M0 T. ~# {
5 F0 M7 e1 i* q--------------------------------------------6 X9 `8 n5 I% u O3 q
begin P_something arriving* T7 X2 a4 |% N& b( M* s P) e
move into Q_wait
( x* x8 Z/ q0 i1 n6 t7 h/ b* ] move into nextof(Q_mA,Q_mB,Q_mC)
' {4 H- I, M) z* Q% u' A. Z0 R* q, b/ s use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
( T1 _- Q) V- C7 t0 M send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
; e$ y/ Q, f% b/ a1 K3 I" W5 e' c( g send to die; S9 o5 k$ z' |5 T! ~% j- y1 ?9 C
end( m, R7 }2 Z F, O# h0 {- Q
% Z/ u- S# I$ o% o( tbegin P_mA_down arriving
- P. Q& P w# d) q" f9 U7 j while 1=1 do % G6 \' U8 H, H2 u: y0 z. j
begin
( i, f8 T* _: a3 e4 ~8 Y8 | wait for e 110 min
9 g: B, j+ q- w) A$ a) I+ R take down R_mA
`! t Y" p9 @# v2 w. }9 ?; E, T# ` wait for e 5 min- A8 q w/ O3 P/ Z: v. |# K1 G8 g/ D
bring up R_mA
4 q: e: ]$ K# y end
: H2 i& E3 w4 p5 p5 r& Yend
/ B5 u8 v+ v( Z" p( y% n 2 @) _% ?- w9 X5 a7 g
begin P_mB_down arriving
) a( d- ?2 y6 a7 ^ while 1=1 do- g. M n; O$ \; I/ f% ] S
begin p/ \; j' n; Y3 n: f
wait for e 170 min
3 e7 y& O5 A0 P: @3 n2 N2 b- W take down R_mB
3 P9 W1 q: {+ ?2 p1 {$ x& w wait for e 10 min7 ^! z( [* A7 {4 ?' I
bring up R_mB
7 l. c Z/ f% g" h8 I3 O" O9 U end. l& l) N: _0 J9 r
end
" i7 K; g5 u# d( M/ H M V
! A \7 ~& p, p) J! w \begin P_mC_down arriving! P/ l1 x1 Q8 q) D x, w
while 1=1 do
: X: L! ~# u! h& f+ E4 u) o begin
; W: E( e' ]2 p! a9 r" { wait for e 230 min; P3 T: w( j4 x3 I1 _0 L ~) L) Y
take down R_mC1 v" q- e+ Z/ `
wait for e 10 min, [. n Z. I4 u8 I. ? u; r
bring up R_mC
# F; V3 Q8 ^! B* C; w3 F end
0 V9 M( }. v jend
7 |% Z5 H8 H. j# P
) d- R4 N& N3 @( d* M0 `begin P_mA_clean arriving) K% V6 l" }- k8 Q
while 1=1 do) j1 t8 ~" j. H! i4 { y9 ^
begin2 [3 h+ b+ G1 z. i/ a
wait for 90 min
1 L, U# v# j3 U& s) x take down R_mA: c' z5 i, K) s: N9 |. o( ?
wait for 5 min! ?. y$ r& I7 N; n
bring up R_mA6 l* [8 X& W# F4 s, [8 m3 g
end( `9 h5 F- u9 r6 o/ ?
end2 k: n! o8 x! J& |
# G& W3 X' C% i
begin P_mB_clean arriving# e' h. G3 H, D9 n
while 1=1 do& ~6 j8 Y! t/ E
begin7 u9 @& N. A! L# j" @9 C
wait for 90 min2 l7 t; k( u( M1 z
take down R_mB
0 S# ^& e, W- ]* ^' ] M wait for 5 min
! s. Y4 U* l, \% Y" C( Y6 w" ^( B0 I bring up R_mB: ]3 ~7 I# S% m8 K+ p0 V$ O
end
3 q* P0 T5 L; n H1 I. ^end
+ v: {/ R' g5 G Q! _ + z' k- v6 a$ ^3 W
begin P_mC_clean arriving" p, {" u7 V7 _* N
while 1=1 do
/ g$ E$ y4 L8 D6 g, r' \ begin
8 w5 P8 S; f m! w5 \5 {% W& _ wait for 90 min
0 O7 O- Q% P' E& K" [0 X% Y/ V take down R_mC
1 Q5 X* ]8 c. `0 l' A0 J& e wait for 10 min9 ~0 j, W* O( K! u
bring up R_mC
5 {& B4 m1 q* L7 l1 n7 h* f" U end5 v5 \$ M1 B% F( A) x9 J& S8 D, ?
end9 H" N% H0 `, Q {/ I
----------------------------------------8 F4 M' |# m9 ?1 F
$ I3 b. Z! e4 ]" r
Exercise 5.9
: {3 O4 Y/ O* A& R- a1 g
' }" f/ o( S( v& i. L- [
0 ^; j4 ^) R/ r: T1 oCreate a new model to simulate the following system:
6 M' n2 {- H, e6 J! VLoads are created with an interarrival time that is exponentially
- _! _- o/ f" k) o+ a5 R- z* s- Jdistributed with a mean of 20 minutes. Loads wait in an infinite-1 ~4 y9 x# Z3 z1 C& M. W
capacity queue to be processed by one of three single-capacity,
: Q/ d) n& P0 _9 L3 Warrayed machines. Each machine has its own single-capacity queue 4 ^% S. U8 X$ R: u
where loads are processed. Waiting loads move into one of the three
3 G4 T! P2 l9 P1 m& R& z1 Vqueues in round-robin order. Each machine has a normally 2 |1 @& q7 `6 E. `4 q( Q
distributed processing time with a mean of 48 minutes and a standard ) I& N# h h+ f/ x& g
deviation of 5 minutes." k; ?% y. d( S4 z7 e
The three machines were purchased at different times and have
5 `& ]+ X1 F0 G, a; f3 }different failure rates. The failure and repair times are exponentially 0 R1 |* H- S% R2 I/ J7 Y
distributed with means as shown in the following table:
( G+ @. u( m9 O5 f- ]Note The solution for this assignment is required to complete
% h. K0 e5 ?$ o, X% g4 rexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
( Y0 n/ e8 y) k" dyour model. * P& J+ w0 p6 f' V Z& y$ N6 e
z' U8 f+ _: D
MachineMean time to failMean time to repair
: b; U7 r- \4 _1 y3 Y( eA110 minutes 5 minutes- F6 A. t% a0 y' b+ L0 F. K- r
B 170 minutes 10 minutes- P4 \! s& e D. V: _7 g
C230 minutes 10 minutes
4 E6 s r* @$ E r6 I& ^! z3 P& X& E% j: d
The machines also must be cleaned according to the following * S5 d) `3 ^. e$ i
schedule. All times are constant: " ~: ?/ `+ ]7 I) w9 i" H
& I* K# s; |, c9 |# sMachineTime between cleanings Time to clean
0 _" M' O8 Q5 Y3 z* e. \$ w- aA90 minutes 5 minutes# }# Y. V2 ~. y9 U7 c
B 90 minutes 5 minutes S G. A( f" K6 h; A
C90 minutes 10 minutes
8 W' g9 g" I+ O6 W5 M$ r' [ m5 g5 o5 ^9 A; _9 I+ S* P* F
Place the graphics for the queues and the resources. . L/ r+ v0 l. p9 h
Run the simulation for 100 days.: \$ _! G$ Z* L6 m& r: ?; w
Define all failure and cleaning times using logic (rather than resource / d1 X b) P; P- `( {) k
cycles). Answer the following questions:
~# }0 S2 v' ?# Za.What was the average number of loads in the waiting queue?
+ @6 B2 t6 a6 O/ u6 @1 @b.What were the current and average number of loads in Space? - N. g, O3 b- m1 X6 D
How do you explain these values? 7 K- G& Y' T2 ^
|