本帖最后由 GJM 于 2009-12-5 21:43 编辑 " o8 h% p; P/ S1 ]7 J
: _4 M, h7 U" W3 f% X8 S# q4 B4 N底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去; K9 s" k" D6 u+ V
5 X, [5 J% N& n0 E8 Y8 I不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
, m0 q' @% A+ ?& U+ q/ T2 X) [6 Y* c
4 x* k1 ?) ^$ Y8 f) o8 P% O4 K--------------------------------------------3 E2 ?) ]: N3 W, r* j2 ^- {
begin P_something arriving
5 I6 b2 @8 j7 H) ?$ L% m0 a! K9 L move into Q_wait6 E& B0 K$ w& G
move into nextof(Q_mA,Q_mB,Q_mC)
$ j }( ]: K* i use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
/ t4 S/ \$ ^* i! Z! t send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
% q0 n7 X" {5 ^& R send to die
) W% a- j0 K9 q( w1 l* {% Mend
# ^% ~/ c6 J0 s, r$ U [( H # [7 f% m4 l5 W! o( L. R
begin P_mA_down arriving
7 G( D( u) \ b+ W. y while 1=1 do % M5 I" d- F+ [6 Q/ C" x: r
begin/ @ ^6 [0 }" d" X/ m2 m) `
wait for e 110 min z: D0 Z& [+ K1 z0 X4 I
take down R_mA1 k" t r) e" M% R1 t5 I
wait for e 5 min
1 z9 r. X1 S, W% Q/ T$ s# E; V bring up R_mA. c; b& J4 E" i/ @8 }, p9 O; J
end
, e% k( O( T1 _$ V9 s3 xend
: w) l. L: I( v" {
_& V4 R' g8 J3 c n2 |2 a' {: Obegin P_mB_down arriving4 n% \/ [3 u) i* W$ q
while 1=1 do; ^5 E3 g. S: K" J* @; u2 z4 i
begin' u, H1 z3 Q S
wait for e 170 min
$ ?6 {8 {2 l; Y take down R_mB6 v C! H' B. F+ V
wait for e 10 min+ A4 a# R) x1 t8 Q
bring up R_mB
0 T' S, o' @, S3 Y: F2 D* S end1 {# ]) g" ]/ t: e6 `$ r
end. a. c& {, p% \& f. i
# Y1 ^% u6 b* bbegin P_mC_down arriving4 K5 p0 \7 [# P
while 1=1 do
6 s; B: C5 D5 W begin
2 J# H/ H& u t! i wait for e 230 min: H. `' R( e# m5 D4 X, x5 v0 f
take down R_mC
" r. ]1 D2 [# P8 E wait for e 10 min
% J4 ~+ {- P1 F bring up R_mC$ W" I9 C9 X3 I
end# w" m i6 J2 P( @% a: G
end
& D6 }+ m4 N, Y $ W1 [' D' U4 D) K9 ]
begin P_mA_clean arriving8 X: q- }. l4 J
while 1=1 do
0 ~( _3 y; q j/ [; s" F begin
6 w+ C+ b/ L) i5 M% j# i2 u. C4 k; S wait for 90 min, i. _$ X1 N5 S x, q
take down R_mA
, q& s7 N! e) R0 m" W' Y wait for 5 min
6 k- b* b2 s8 M9 z$ d. e bring up R_mA
3 Y* i* k3 G5 c2 \4 n# t5 u" f end8 n3 q8 W+ r) |' |4 b8 x
end5 i- B1 k* c7 v. J' g/ P
5 Y% _; d' a6 H$ y; G- Q0 r. Nbegin P_mB_clean arriving
8 b+ d# G4 t. Y$ O# T h while 1=1 do! G& B7 R0 L6 {% G, F
begin7 v& b" Y. T$ @8 ]; h! ?" ]$ i' d
wait for 90 min/ s c u( E7 w7 `9 z9 p
take down R_mB" {# J& u+ X4 z4 Y4 T; \+ M! K
wait for 5 min3 B/ I$ e; }. r# S
bring up R_mB
# a: \, w! @, Y2 A8 W) } end
. W6 n" s' t1 Hend5 U) O( X+ a7 Z. o5 G$ A
6 v3 t, _" Y" x Z0 y8 g W8 A+ Ibegin P_mC_clean arriving
8 m' l6 ?+ y0 z while 1=1 do l# m$ X; w7 q3 m1 |/ t
begin
% y( X* {- t+ H' |( P5 t wait for 90 min
4 e( L( B! ^& [" X9 v! e: Y) z take down R_mC' e7 [! {# h% a2 a/ X* ?
wait for 10 min
# X9 S, R2 A6 ?9 q0 C bring up R_mC
6 m) x7 ~6 c' A6 ~/ l' H end A5 X5 w/ t3 O/ O
end
9 F0 V8 j# n, N1 ~+ S2 }----------------------------------------
k }5 s& G" l% v( g / K0 B/ H3 q$ F2 u1 S; k8 I. E- X: l1 a) H
Exercise 5.9
2 ]/ d# @/ A Q' x4 d; ~ N
6 T. g8 |+ Y/ a3 \ a) c# B j) x) l) I- _3 T* `
Create a new model to simulate the following system:! M* v }' K4 g; U' _
Loads are created with an interarrival time that is exponentially
- s# g5 }+ B/ Sdistributed with a mean of 20 minutes. Loads wait in an infinite-3 S4 U* g. }. E4 P
capacity queue to be processed by one of three single-capacity,
( c" y* ?, F' @! v/ qarrayed machines. Each machine has its own single-capacity queue ( z \2 B; N; S
where loads are processed. Waiting loads move into one of the three
- X- y! E' e/ s" ?5 Y; aqueues in round-robin order. Each machine has a normally 1 w6 Y! @6 S) Q4 C+ n
distributed processing time with a mean of 48 minutes and a standard
: C0 `1 b5 I$ x6 jdeviation of 5 minutes.+ ^( N! _$ W; y! C% b2 {' r
The three machines were purchased at different times and have
+ p7 F1 T( A; z6 O! t; Vdifferent failure rates. The failure and repair times are exponentially
+ @# n9 o' z4 idistributed with means as shown in the following table: + s$ o" U/ o# d+ B) C/ e5 @
Note The solution for this assignment is required to complete + E, f0 c/ A1 j
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of h* E/ x* A& O- h) B7 J3 T% x
your model. ( k# h* Z% p( {3 Q
" D5 H1 ]6 @# J* ]+ I4 e; a4 j( w
MachineMean time to failMean time to repair
( e8 i( M1 d' [# b' bA110 minutes 5 minutes0 H3 B$ v1 I8 X
B 170 minutes 10 minutes
; l9 | f9 v5 {' x+ O' M _" }9 bC230 minutes 10 minutes
5 w1 Z' `1 C, c' ]- r, G$ a* I$ l! p# E( d p9 t# l N0 z
The machines also must be cleaned according to the following 6 b* |" a7 ]# ?" ?3 n: i. g' u! w7 m
schedule. All times are constant: 0 m, ?1 ^ s5 Z6 ]" C
1 ^& V# w- G8 j% k- T
MachineTime between cleanings Time to clean
6 M8 l9 N7 `0 z+ A: N; r+ G3 JA90 minutes 5 minutes# O8 L+ N6 ~4 r8 y& o/ J
B 90 minutes 5 minutes0 Y. _" x; b) m
C90 minutes 10 minutes
N7 b" S% r( v. V+ q! Y/ k# I. l/ _7 \0 N8 ?
Place the graphics for the queues and the resources. $ x% d9 K" A$ Q) s& w$ {4 O" I
Run the simulation for 100 days./ K# A8 k" e$ Q: H7 M
Define all failure and cleaning times using logic (rather than resource
/ h( F9 V8 M) C* j2 tcycles). Answer the following questions:
' t; G7 B; |0 ^2 R- Ta.What was the average number of loads in the waiting queue?. c$ ?1 z6 R7 B, e
b.What were the current and average number of loads in Space? $ O+ F1 c9 K. S, ^
How do you explain these values?
' X2 }4 G( F" A: A! [+ a# B |