本帖最后由 GJM 于 2009-12-5 21:43 编辑
0 N I7 }& I, ~. b+ j, s$ Z u# q4 f4 N A& Q
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
. ?2 I) _% P# K, [9 ~( q! F
- }% b5 y, ^$ G' d4 F. I2 t8 w不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!8 t3 d: M7 i1 c# m& Y: v& E
5 p* z7 O/ E; |. f2 o9 L1 E4 E--------------------------------------------
' O7 _ C, \, d' U) i7 Qbegin P_something arriving
! o; s3 d5 x- y$ _9 X) x move into Q_wait6 s" b3 }! _! L0 x) A- L( g- `1 B6 M, O7 r
move into nextof(Q_mA,Q_mB,Q_mC)( M4 z- }- F& }- b: M: w4 s
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
: W- X" U& I& o send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
; } _7 N) z; V send to die9 r5 W$ C$ z- Y( M3 Z3 o
end* _+ ?4 \9 x( o: s! l5 q
" A9 A- p+ p/ k0 I# _
begin P_mA_down arriving
0 z: {' l4 o% C, P ~6 } while 1=1 do
7 q L/ |- i g6 j" ]1 X9 O6 F begin0 n. y1 j9 L8 w; K8 e
wait for e 110 min
4 r% ^, ]3 t! @$ J7 {: f1 P. X take down R_mA
) ~2 L. o9 H. n8 D7 X" {/ n1 t wait for e 5 min
: s. ]# H t0 R/ N5 w% j F, I bring up R_mA
$ h1 x/ I& | z3 `) i5 `& q3 C0 b end3 r& z n' o K3 V: K
end
4 i$ F4 E1 k8 r$ {& z1 F . B1 n4 M; q% x7 m `4 C
begin P_mB_down arriving) e2 I. f' t& M* D- |' ~6 Z
while 1=1 do
1 Q, Z9 K! _- k* r# K- W. h+ }4 k begin, h3 D0 y, O1 P/ L% h3 ^
wait for e 170 min
: ~. ~; H2 d. ^5 R, _( |$ W! H take down R_mB* a% i! @1 c$ j/ K+ ?
wait for e 10 min
) l" N+ E" K8 Y6 i! T bring up R_mB
3 q5 `- n9 b2 m& V1 o# t end* ?+ [2 c' V1 r# F! B C7 v( C
end
9 b( m: p. d/ S& D- A
3 E, J2 T+ ~& [6 Ubegin P_mC_down arriving
6 g2 R* E ]$ y; v' U$ G/ Y f9 I while 1=1 do 7 e# F% R, f+ O6 [
begin
7 h5 d+ F* C5 F. B wait for e 230 min2 j. L+ D& A% f( `+ O
take down R_mC
* ~$ m- R. |5 ] wait for e 10 min
! w( u8 S+ @% z- n. e5 R bring up R_mC
5 p" l7 b- R+ o9 p8 F J, l; J end; Z* i9 ~; {+ P9 d4 j7 F a
end
! g+ Z7 C P& d6 k. A, q! h$ U3 V ; {% |) R# u2 | H* y
begin P_mA_clean arriving
3 S6 j0 J: e1 [0 @: l, ~' J* F" Q3 X while 1=1 do* n0 c' }( ?1 W1 U$ ^
begin* c- w1 e" D1 J% m C \1 k
wait for 90 min
$ B4 @5 g! |8 _ take down R_mA5 J+ Q, y0 x7 i! @* _
wait for 5 min
* u E' A7 O" K& D bring up R_mA
9 M1 c0 `% `; v- C7 h T7 i end% ]1 e3 b& G! p0 g6 a3 E
end& Z M N! T) W. I
& L6 P8 j( o$ Bbegin P_mB_clean arriving: X" f" A( r- @! R; G1 w
while 1=1 do$ d* D) ~% N6 ~+ p4 V& G& J$ z
begin
% Z* ?5 A |3 U0 D; n( m, ~ wait for 90 min! \. P$ A1 G1 I, v7 K8 `# m2 R+ n1 m
take down R_mB
0 [& x4 R$ C& E6 _1 m wait for 5 min$ e! s" }* o% g$ w6 ?
bring up R_mB9 V( F% G6 L" _7 T
end
* u* N' D3 `9 _4 r3 Cend8 w8 M4 _' O4 b& m/ l) C1 `7 u( H
/ a/ Z# b2 \# w5 e: G. y: y
begin P_mC_clean arriving- \8 [, Y3 Z; p8 M0 \# X. i( Z7 a
while 1=1 do
5 _5 h9 X5 y# r2 n& k begin `0 c" A! f. J1 z, m0 x, O
wait for 90 min
2 p$ O! r3 j0 b( z$ I take down R_mC2 |; Z4 W9 g" w6 X; Z- s* T& A/ m% ~
wait for 10 min( D1 B1 v: @7 }, j: v3 `- ?, {( Q
bring up R_mC$ `* |- Z3 L* S
end
8 t( u* A( t( P& m, c- \end I( B0 G) X+ H. T
----------------------------------------) P: u `9 h4 w7 s! l4 M9 c+ Z
0 m2 ]/ Y& ~: E0 ~: UExercise 5.9
4 b! ^' I5 c! x9 ~
: f' f& [# Z8 x& i+ }8 ?' ^4 ?6 a
Create a new model to simulate the following system:
3 g. a, }, K0 {3 B \Loads are created with an interarrival time that is exponentially
' K6 J! i1 z6 L: c; {distributed with a mean of 20 minutes. Loads wait in an infinite-" }6 p8 L! }" w% {" Y
capacity queue to be processed by one of three single-capacity,
2 j- z, b' J2 w3 R8 `arrayed machines. Each machine has its own single-capacity queue
E7 W5 O* L9 Lwhere loads are processed. Waiting loads move into one of the three
3 n0 Z5 m% j* `! A: b, Dqueues in round-robin order. Each machine has a normally - }( U) W/ Q7 T6 h. }& }0 d, [
distributed processing time with a mean of 48 minutes and a standard
# j7 T1 A& Y6 k$ x0 j1 @deviation of 5 minutes.
" z% y# R- {8 EThe three machines were purchased at different times and have z2 Q4 m. e" t! G+ [2 b
different failure rates. The failure and repair times are exponentially
' \& R/ {( F- _. Zdistributed with means as shown in the following table:
. \* U5 A4 I! S5 H1 J5 cNote The solution for this assignment is required to complete
/ n- x( z; {# t" W% lexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
$ ^, r- c% N; Z5 F0 t! _& Y; ayour model. 1 b: `5 @: X1 J8 b& }
, [/ ?, G3 d. _. }/ j6 j- U
MachineMean time to failMean time to repair
% J; e' y9 u4 k! k$ \, q) ^A110 minutes 5 minutes( D! W3 k4 T* p* f
B 170 minutes 10 minutes
0 R& F6 R, S6 Y( i4 ^C230 minutes 10 minutes( K' o& Z) r8 y
+ G& J& X8 c1 g" I" y i8 |
The machines also must be cleaned according to the following * [1 q" p& i. p2 y$ Y- T" t
schedule. All times are constant:
& r; l3 o+ d* ?, o
* G; g7 \! P; K CMachineTime between cleanings Time to clean3 {- B' F4 P/ o J0 }6 k% x! Y
A90 minutes 5 minutes2 ], Z2 s/ P( i$ b- Z. t
B 90 minutes 5 minutes. ~4 u- l7 T* V6 u
C90 minutes 10 minutes
- \" p' Y3 D5 T' u( a& i+ V" S# V9 }3 X9 e8 v# W+ H
Place the graphics for the queues and the resources. 9 V, Z$ N; B# |$ A( c$ L( y
Run the simulation for 100 days." U, t+ n4 A2 _ ]6 y% A/ n
Define all failure and cleaning times using logic (rather than resource 7 B# Q* o$ H9 i! L3 M
cycles). Answer the following questions:
& X$ L8 y0 b( |; k* a _4 k, ma.What was the average number of loads in the waiting queue?, G( S \$ |2 ]! Y' n% w6 g
b.What were the current and average number of loads in Space?
' I0 V/ A X1 G/ u% F7 A8 X( R; BHow do you explain these values? , C {. I% j5 y/ D7 p& M
|