本帖最后由 GJM 于 2009-12-5 21:43 编辑
- N0 P) i7 ]: z4 M' s2 o. N: N8 D6 v D* G
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
0 P o1 C: B' m. B: @' ^4 @2 | k. G& D5 l$ B) l, Z
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!/ |3 }/ Q- j. K: e& J
/ I$ G! \4 e# m, N$ \
--------------------------------------------- D9 V" \( _- q$ v6 Y
begin P_something arriving
6 M" \5 M7 z' { move into Q_wait! [2 y r- [7 j& Y1 ] ?' _
move into nextof(Q_mA,Q_mB,Q_mC)
- j9 e; A5 Q7 l3 X) u; i use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
$ F% w. U; R- y8 A [# `) F) D1 V send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
+ R/ q1 o: P; A o7 w: M send to die
2 V. J: ~" n: Bend
z) ?, y- l3 |& o* c* X 4 x4 s2 z$ f2 }* D! b& H' E
begin P_mA_down arriving5 {) ?3 e, _/ j1 S) g9 W" F
while 1=1 do
" V8 U$ [# f/ e begin
+ \! E& }6 e) R/ C wait for e 110 min5 v1 g7 @# {- ~3 C
take down R_mA
6 q4 X# A2 A% ~9 f& `& g$ Q& e wait for e 5 min! B. g& ?8 S8 e5 Z7 B
bring up R_mA
# x0 w( x( ?, }- t end
5 x: V h/ R+ V7 xend& I, h! h w6 T8 Z
. s0 _% {: Q0 E4 R
begin P_mB_down arriving
8 r! s5 r( B7 O7 h+ W# R# G$ L) E while 1=1 do1 B1 u7 B0 q, P8 T" Q. O
begin+ S4 v$ }5 o! L4 `
wait for e 170 min
! P6 d, z/ H \$ e$ A6 A' W+ K( V take down R_mB
4 f* ]$ V* v; y/ n; b" a wait for e 10 min3 ]& |2 q5 C! Y7 h' `/ d) j
bring up R_mB7 E+ W! T0 `% ^
end- \# ]+ m' \7 k2 |# v
end% l8 g0 y6 }; g5 A8 O, L9 I
. m, ?$ M" ~' J# P& W, A
begin P_mC_down arriving0 b# f6 U$ t7 e* ]( y$ ?) ~4 i& z
while 1=1 do 2 z; Z } F4 D& @. V/ X1 `7 e2 y- \
begin
& p% W! q! {/ I: c/ b$ x1 ] wait for e 230 min
" A: Z9 E- h0 h$ p+ J take down R_mC7 p% V9 E, @9 ~) j9 p1 y1 R
wait for e 10 min; n9 z1 Y5 D! _% Z
bring up R_mC& x8 m% ^! s- [7 U+ B9 {
end
' z5 @% E' b7 T' v u: Fend$ f, Y9 l# X9 C: i) O& o- t
$ O4 N; I5 j* F5 |2 G1 t& c8 r5 ibegin P_mA_clean arriving
. v( x& y* d1 J/ |. D$ u while 1=1 do
/ H7 D0 T. O* k. J# [ begin: [% e7 u/ O9 G2 W D8 t! T
wait for 90 min- _9 |$ O' Q0 L; `& C" I* z
take down R_mA
5 |! [7 K4 j, x5 Q2 |2 y9 M, c" ? { wait for 5 min% F- `$ D8 [9 X
bring up R_mA' e. h7 C- N0 o2 E
end
& u6 r+ o6 i: z" N4 g( yend6 I/ M& h% P8 O& y' W7 }) ?, h, R
5 e& E+ e! c) j: D1 ^" r
begin P_mB_clean arriving \0 b* f: V8 y' ]9 h( n
while 1=1 do& @ n/ k1 B \. H+ g
begin
% K, u' B. ^0 M# U( n l wait for 90 min$ Z5 b2 g! M0 {
take down R_mB* _$ v: s7 l3 ]% n# }
wait for 5 min( X: Q: E& ]6 r t4 Y- x
bring up R_mB
2 R7 Q8 h2 F. W9 [6 l$ _* N end
3 O( L9 d5 T0 Q Y& @0 B7 C% w2 ?end5 d/ X+ g7 w: g( o
* a6 z& C# O7 ?begin P_mC_clean arriving
% Z, u0 |9 }! @% r) X" Y. o- [ while 1=1 do
8 [4 N) ^, h" d begin4 A# `% W1 z5 I! W
wait for 90 min. g( H$ Z0 _6 y1 ?- o2 s5 R: ]. ^& A
take down R_mC+ R( i2 C) B3 ^% Q3 H
wait for 10 min
, k2 V" \" e4 t" C; f2 }. g bring up R_mC7 J+ t9 j1 l0 @2 ]
end+ K, T; x4 i* ~3 I
end) G; Y" k* Z/ V, B
----------------------------------------
, _2 w% Z2 Q2 ^% }! ?
; [( o/ V" M4 V# F- v$ T d! rExercise 5.9) k0 m( ~' _4 J a0 f0 V+ a9 m
# k* S/ T/ @4 M' H! e) j
% [, ?/ R4 P5 ZCreate a new model to simulate the following system:& c, F- @9 \4 g, e' L8 G [7 }% T
Loads are created with an interarrival time that is exponentially 3 {* U9 k& C ~$ t: A2 M8 `
distributed with a mean of 20 minutes. Loads wait in an infinite-
! c3 t" m0 D, K! j0 Ocapacity queue to be processed by one of three single-capacity, 8 }* J# R5 w } t' ^
arrayed machines. Each machine has its own single-capacity queue 2 x+ ~0 Y8 @0 y8 z, {
where loads are processed. Waiting loads move into one of the three 2 n$ t4 g( w9 r p [
queues in round-robin order. Each machine has a normally " n, P: L* Q. C- ~' ^
distributed processing time with a mean of 48 minutes and a standard * q H/ f* K/ i0 K4 G
deviation of 5 minutes.6 M& W( P0 W7 e% Z
The three machines were purchased at different times and have
T# m6 S; G; ?! g/ F5 \different failure rates. The failure and repair times are exponentially - ~- @' f6 @- @4 a& w+ X4 n' W
distributed with means as shown in the following table: # U" X2 b" u7 G. `8 x
Note The solution for this assignment is required to complete ; s8 w# }: ^) I
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of " s8 ]/ t, G% [6 b% e
your model. 0 }+ v8 E+ [' U# J- x
& e; e6 `2 F; n' U% S1 nMachineMean time to failMean time to repair
+ d1 |( }" W" r, U y/ CA110 minutes 5 minutes: X7 U3 Q) | S7 J) m; {! j. c8 D, u9 r
B 170 minutes 10 minutes6 K9 Y, ?* t R8 o
C230 minutes 10 minutes5 D7 C1 S b, z p4 B+ B* [* Q
3 N9 m: y! l, ~. xThe machines also must be cleaned according to the following ' C" U$ P# s8 W+ D! {2 Z
schedule. All times are constant: # U3 q* B3 B9 v+ S
4 K* Q3 q! K8 m
MachineTime between cleanings Time to clean
7 N; C' n9 ?( S/ R/ m5 e$ wA90 minutes 5 minutes6 h% v! @2 E8 ?# L; o" c% u) u5 g
B 90 minutes 5 minutes
0 [4 T, {$ v4 k0 Q8 \+ b0 nC90 minutes 10 minutes
7 @# b# T$ e- m8 p3 h; O* ~1 w7 v, D$ y u" t' X( ?
Place the graphics for the queues and the resources. * {( v! f& ]3 O* V( S j1 Q" S
Run the simulation for 100 days.
" T/ e& I& N' H8 \6 RDefine all failure and cleaning times using logic (rather than resource 7 T3 B$ N" \1 g, J" F$ K
cycles). Answer the following questions:
7 X P* h: W$ C/ r ~a.What was the average number of loads in the waiting queue?! L: |7 ~; |/ A- {- s, Y
b.What were the current and average number of loads in Space?
! C0 w! Y) I8 Q" CHow do you explain these values?
2 E* H9 [3 {. R" R* H. s" }: ] |