本帖最后由 GJM 于 2009-12-5 21:43 编辑
7 _4 Y! ~8 s' `( o" q5 e
, \. P' ^6 E8 m& R& r底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
7 r6 _/ [+ g4 S% P6 o9 c' P; Y# k7 Q# [
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢! _+ w. b6 N$ X/ f, M) a4 c
" J' U7 K! o5 F
--------------------------------------------; E; d1 o2 K" I6 x
begin P_something arriving7 f, I4 N) K: \5 M- d5 W4 b
move into Q_wait
9 `7 Q- ?: e; r1 @5 R0 }5 k8 Q move into nextof(Q_mA,Q_mB,Q_mC)" W; Z8 ?8 @ ]! M/ j" T
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
2 N) ~/ O3 @; @/ f' O: Z send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)6 Z# v( h. m6 \. a) H$ v
send to die
. V9 Y4 i* r7 ]- B* z2 `end4 x' d" f8 A$ c0 `( O+ {& d
! S3 I; c4 j* P, |" l
begin P_mA_down arriving2 a9 Q8 y9 f4 Q8 S8 v
while 1=1 do 6 z$ a7 [& @3 T
begin) w& \2 T( c5 w" r7 i. L
wait for e 110 min- c7 H( \: ^% a% v% `& h- g
take down R_mA
, ]5 C6 S. T( z2 c5 S# t wait for e 5 min/ k4 m s" o$ B$ Z/ X( A" u6 e
bring up R_mA6 e7 x. L+ `/ ^; Z
end: Y0 I/ ~. g% e$ P$ d
end4 R: A O4 B& P7 ~" k
' T. \4 w+ L5 V( o( G: f
begin P_mB_down arriving$ k& w' i1 e: |/ O
while 1=1 do
$ e, }; o9 M& c' }" S begin T* _! g; k' ?( m6 s/ D* o
wait for e 170 min C- i$ _$ _' Z6 z
take down R_mB' _; t' l! @: i4 T# A, R
wait for e 10 min
; s8 B) o. @# q3 K3 C, L bring up R_mB
0 {: k/ N/ q* Q! ~/ a end
+ K8 C, y/ e0 yend
6 `6 p3 \/ ~( J! w1 f7 M* P% |
% M$ ~ T0 [: P* p) @! K( Bbegin P_mC_down arriving
$ \. W7 e5 y, U! F while 1=1 do
) W6 U2 N* A# D4 _6 C begin
4 |/ f& Q' E' h wait for e 230 min d5 g& D' }" k+ p; I
take down R_mC
8 C: K3 E: Q& v C9 i3 {6 v wait for e 10 min
# m* f f* C) j' G bring up R_mC1 b9 B2 {3 J3 H3 {& z N+ M. H! n
end/ f8 |+ |" f, G5 v
end
4 c% y5 |& y5 I9 X7 f+ Z. s$ `4 ? 0 a3 u! I7 T6 V& O j; j4 \' W
begin P_mA_clean arriving
5 z+ m8 L' `# ?5 @7 Q$ _ while 1=1 do
% U" C% x3 j2 }9 V0 ?) M: l begin
& [$ V! B6 i- G3 E$ Q wait for 90 min
. ]9 ^+ A/ }4 E5 b \ take down R_mA
7 `# K6 H# E) s/ z wait for 5 min
" P5 q4 \3 q {" q) Q. V$ s bring up R_mA2 W, ~' E8 L* H; A1 k( J; Q
end
' |# J* l; g* {end5 }( C! x* f( o: I' e% J
4 L6 j: y# t8 t) Q9 Z
begin P_mB_clean arriving
, V5 c* m' ?) C5 F while 1=1 do2 ]7 z* e8 Q4 x9 H0 K$ R% h2 }
begin
+ N' }; K; X6 n6 d3 q) p wait for 90 min! F8 [" V1 w% a4 n1 T
take down R_mB
U) e! O, q0 ]( V! A6 Z wait for 5 min
( X0 h9 P1 p* O9 j/ o% T0 u bring up R_mB" ^3 j8 ]# y! j4 R/ ]+ s, c
end& [2 m+ A% d5 x! N% ~0 F9 h
end
3 j+ s) f( M: y- X) P' \$ b
0 C* d4 K, Z' e7 ]% W7 ibegin P_mC_clean arriving6 \/ j3 [1 R' O0 M+ ]( y- {
while 1=1 do
& k: @7 y1 k6 h( P+ Z& `0 o begin
8 ^- Z0 `5 O: ` L4 w* s/ ?/ R wait for 90 min! Z8 C7 \3 J2 ^4 E( t" P4 b
take down R_mC& o7 n* |) ~. `1 k8 d
wait for 10 min2 w1 R5 p8 o2 o0 a9 z
bring up R_mC
3 T' P# {% G' S2 q; F1 b& P end
9 @6 d( I8 d% y8 _* bend8 A$ @& k/ n+ i" y& v* B
----------------------------------------6 h/ H" O v) h X4 l
d$ ]- c: L2 k+ P. CExercise 5.9' B' q9 ?, y& d
& y( ?3 w! B& o4 _# Z% U4 J: P
! w' l9 w; Z3 T: {( M, x7 a
Create a new model to simulate the following system:
& [$ n% _- _3 E3 B' \8 _. SLoads are created with an interarrival time that is exponentially & z( f" D5 U1 _9 \' E! l% }& M) ^# O1 O
distributed with a mean of 20 minutes. Loads wait in an infinite-
& g# |. j% K! n) @capacity queue to be processed by one of three single-capacity, . G, J# \0 p) r4 x3 U. c" U
arrayed machines. Each machine has its own single-capacity queue ?+ d9 L+ x) W' j( q
where loads are processed. Waiting loads move into one of the three 2 e3 ?' C7 I f. O9 O" `0 k$ |: s, t
queues in round-robin order. Each machine has a normally 8 A/ e8 ]( w" N; {/ l
distributed processing time with a mean of 48 minutes and a standard
$ T6 ?& W F* x, h) y; z' j5 ^deviation of 5 minutes.
* T+ O5 N9 u: F `/ ZThe three machines were purchased at different times and have
7 {* F. J' I E0 n- u; K8 w9 Kdifferent failure rates. The failure and repair times are exponentially 5 Z9 ^3 N, P& Y% k
distributed with means as shown in the following table:
: B8 p+ s1 L# KNote The solution for this assignment is required to complete
* F6 o l6 P! }+ J9 gexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
% M% k9 {' l3 iyour model.
/ m3 b% c6 \1 n' e' M9 V( C7 E7 H3 c; N" O& }
MachineMean time to failMean time to repair8 W; m) ]& y; D5 V
A110 minutes 5 minutes
5 L ~0 G# w4 {/ X2 C SB 170 minutes 10 minutes
5 `5 l- a1 j& M$ A. `' PC230 minutes 10 minutes
: {8 F% C" ?: C( ]1 f5 H5 s) D! _
" ?% b$ j( V O( ?! ?1 QThe machines also must be cleaned according to the following
- [4 k6 [7 P- y9 m7 n. Gschedule. All times are constant: # ^) m+ m( h* @; u/ S
! r) j# X+ Z v# p! t) Y7 I
MachineTime between cleanings Time to clean' R/ z& c% [4 a- p$ l0 ^; Z
A90 minutes 5 minutes
" B8 z3 ]3 V- ~# S( zB 90 minutes 5 minutes- k* \2 D6 A/ C* N/ g
C90 minutes 10 minutes U$ |& g' O* W* A/ w
; x& N, F$ p# b9 O8 f
Place the graphics for the queues and the resources.
, h8 N4 V' z2 r* d. U8 wRun the simulation for 100 days.) A3 Z) ^8 U& v
Define all failure and cleaning times using logic (rather than resource ( ?$ ^( I) n3 v! D3 b
cycles). Answer the following questions:
; V# G( W6 p" s! k1 Y \a.What was the average number of loads in the waiting queue?
! Y4 `* X! n( N F2 T8 ]: h/ H& L# ob.What were the current and average number of loads in Space? 6 D3 w; i0 g# H# J& q
How do you explain these values?
, t* |6 E; O c8 R" } |