本帖最后由 GJM 于 2009-12-5 21:43 编辑
$ i# ^# {+ N4 F: E0 J; o8 I: T* C G
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去! u" v: q. T: z
+ _# n4 p( @4 @3 f. R5 u
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!3 w. |6 |3 c7 [% i% r
/ x& c. Z6 |, E8 o, t! E |. m
--------------------------------------------
: Z9 N3 c8 R4 ?+ k4 ^6 p0 W& Jbegin P_something arriving
% G; g% B% r: u: Z move into Q_wait" {. [* t* K! b, I) [
move into nextof(Q_mA,Q_mB,Q_mC)
6 N( y; i- P6 h6 b% n* d1 ~: S use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
- `, x; T# x0 V! B4 m send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)! [6 y) U0 b% `. Z. h; S
send to die
6 D2 @8 P" P3 i F% a1 U; bend# T& Z" ? ]. \* p8 J
& ]9 b# s, S0 i0 jbegin P_mA_down arriving
# v( G; I$ J# R1 N while 1=1 do 4 g5 f# p' {! L0 u
begin
, F7 u t+ Q, D8 m wait for e 110 min
% I5 n* q3 ^3 ]& {, m- G take down R_mA
2 [- D! S: n: l$ ]/ W! _3 ]. h" Z wait for e 5 min
: g% r& \4 j# C8 P: n* z bring up R_mA
7 l& K k9 T+ S& k' {. _+ e end# M" B+ v/ V# E
end; l7 |# x) @; o, v6 b' L
( r8 r5 P" h3 Ubegin P_mB_down arriving
+ o$ S6 N1 R6 B/ N( q while 1=1 do' U9 y5 K& _, a1 }; m+ ]
begin
4 F& P# v: i6 [. u wait for e 170 min1 n- D& M% M4 D
take down R_mB0 s/ c" \3 d3 h$ d7 W
wait for e 10 min5 \% N1 i* ?, l# U6 t+ b
bring up R_mB* i) k2 Z0 g9 M& U6 h* I W
end
3 C \( j/ u" z' h- vend$ V+ @0 `) N: D# [. L* R
( |$ Q3 ~5 K% ibegin P_mC_down arriving8 Z: e/ p! `9 F c
while 1=1 do . f1 ?9 d! A8 v: a
begin
: x5 ~: |- i+ _+ Z: T0 M wait for e 230 min
- d1 _; _/ d' z take down R_mC
7 g( N, ~: v. u+ \) Y' {3 h wait for e 10 min- S/ G! n/ {3 j. C+ p$ r
bring up R_mC
# f w8 G8 |7 m- }+ v end
; X* r1 }+ a1 t: x) Z! R ?( ?. C: Eend8 t% @, r8 ?0 _" x
1 r$ }: i0 z |% M3 h# x% V% Q
begin P_mA_clean arriving8 l+ p* P: J0 ], b2 b. Q
while 1=1 do
5 X( U( Q6 {4 p2 ^3 c6 i* G begin
% y# e" R$ f+ v8 E4 k+ _ wait for 90 min, ^) s [$ p1 K/ l& p
take down R_mA8 N' i8 s x! B$ x0 j. R+ {
wait for 5 min: A4 K$ [# N1 X. C' \& K" _
bring up R_mA
: t& T9 k! L" W q5 z/ E" p9 g end) _/ W6 \( q) h* h
end" W8 j! [/ H- _
, U/ O+ [: o/ f* v) p' h$ R$ w$ s
begin P_mB_clean arriving
+ @; }1 i- T$ K& S7 T6 Q while 1=1 do
, _) W$ |) W6 d( r9 |/ x begin4 q+ n* ^0 e, A' S1 l
wait for 90 min( Z8 c' j9 |* k# k, d/ F
take down R_mB% {$ F, h' k6 Y# T- D
wait for 5 min
4 C2 O6 |" ]5 X! u" a4 i bring up R_mB
; w- g# ^3 z3 P end
7 B; n+ l% N! m' m6 Zend9 M5 V% w+ v; f6 }
2 ^9 h, R5 h" i# Bbegin P_mC_clean arriving% T7 f! q3 V2 ?6 ?- k
while 1=1 do
1 q; G9 ]' F- _1 x4 ` begin, ?# Y& L3 Z2 V$ \+ d% g
wait for 90 min
- H I! V0 W, Z9 G! H+ c take down R_mC Q P0 u* O* Y3 N( l$ y8 v) l
wait for 10 min& ~. ^; z P8 V( \
bring up R_mC
( d$ B& {7 M. |& O. _ end
# h5 f: b0 M- X y7 `6 M3 Kend4 D! w2 L" }9 q+ n& z
----------------------------------------
9 n9 c- o# f; _$ e7 p ( q3 |0 y2 c% \! L. E: N
Exercise 5.9, y' T$ P5 ]' G8 g r' v2 L
+ m6 z0 t( _+ \! ^3 v6 K
: H. @' x. |7 { O
Create a new model to simulate the following system:
: K0 [( b& f$ J) OLoads are created with an interarrival time that is exponentially
; A* M4 O( }( l) [, W( d, \distributed with a mean of 20 minutes. Loads wait in an infinite-
$ H: @4 }$ ^1 m8 Z2 Xcapacity queue to be processed by one of three single-capacity, / ~# @8 T+ I( w' {* p
arrayed machines. Each machine has its own single-capacity queue ' F" f1 v& k" W/ i) u
where loads are processed. Waiting loads move into one of the three
6 I' c8 c+ M3 N0 m$ _! @; \2 U1 mqueues in round-robin order. Each machine has a normally
' g- C* p; C) g$ [, N }distributed processing time with a mean of 48 minutes and a standard
4 }+ P- ?; c. ?& O2 d- R) bdeviation of 5 minutes.
0 {( a% e! d' _9 Q9 _9 U6 {- JThe three machines were purchased at different times and have
; x5 c7 |) {1 q5 }1 h$ tdifferent failure rates. The failure and repair times are exponentially 6 T1 M) B! J, e" t2 u
distributed with means as shown in the following table:
. M' y& j* E* W* z, nNote The solution for this assignment is required to complete
. A) } G( Z8 M! Q, k# Sexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
2 ]- S m6 l+ s- K/ a. ~your model.
. ?/ S4 F' c; P1 M& l- T2 [
9 d$ ~4 T s2 Z3 fMachineMean time to failMean time to repair. n+ |9 i2 W$ x: {6 T
A110 minutes 5 minutes( T4 u2 g% X4 N& s& j
B 170 minutes 10 minutes
) S( {; j- E3 K* {+ y# WC230 minutes 10 minutes
9 `- T# _! ?) G' S8 F. g c* T4 c+ Z1 W* x* u' j
The machines also must be cleaned according to the following
$ P& X: Q$ e& v4 Y& dschedule. All times are constant: " J* h! g3 [# C5 C" a! g" e
; z7 b/ U z9 r8 o
MachineTime between cleanings Time to clean
( L% W1 ?( i+ v6 d x+ u& ~6 DA90 minutes 5 minutes
, |1 \6 B/ T" {1 w7 a1 DB 90 minutes 5 minutes' k+ ]4 E) [( g2 g$ U X4 m
C90 minutes 10 minutes2 C5 q7 @ C3 D7 o% R
7 R% H) u8 F' |! g
Place the graphics for the queues and the resources. 0 X/ k9 ?% T/ a. A# [7 W
Run the simulation for 100 days.
2 Y# K. r' \1 {7 a+ j; s- |9 n8 i) T; `Define all failure and cleaning times using logic (rather than resource
7 n8 {/ H8 B4 \cycles). Answer the following questions:
- ^/ i" l ^6 R8 u+ _a.What was the average number of loads in the waiting queue?
6 V, c6 H$ ^9 Z5 H! _, c# Nb.What were the current and average number of loads in Space?
g. F* |! x5 G* D6 _4 lHow do you explain these values? $ q; N% }2 q9 n/ n8 _( ?4 ~% m
|