设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 6579|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
# k, C7 F, N1 i1 Wglobals  G' H* d: p  ^  `  L! e
[
$ ^! @$ y" e1 n& d5 c" C  max-grain    7 t, C4 R  G% s1 m0 d
5 R( X9 h! |6 ?' c) k: g
]/ H4 H0 H( }& C! E& W8 ?
, T5 P/ ]. J, k/ i
patches-own) V$ D) h- y- N7 A& J  I
[/ c2 j, A  T# [5 D/ B+ ]- {7 z% B
  grain-here      " \0 R% {. e  n
  max-grain-here  
9 d) j) j# I" I  q4 Q  R2 t]
3 G% ~. t' b8 R6 @
; D, d  J1 ]8 q' f) \. m+ vturtles-own+ r! A( j, V2 A( H7 |+ v1 z, @6 n0 p- h, Z
[
4 z% |8 j$ k. t; p2 C  age              - r* Q6 _( t- ]
  wealth         ; _1 z- i3 {6 r5 s9 X. Z% p3 ^3 g
  life-expectancy  * a8 d  v6 b7 \3 K5 S2 J, |" g1 R
  metabolism      
) _& i: s2 W! Z8 Q4 r' E  vision
  ~  t6 H) j$ B8 i. \2 I  inherited         
4 ~' G2 k  Q; \% S# F]
* A4 N7 [' ]: ~' g. L4 Q* w' b8 _7 I) z
5 X, g+ d: O0 [  {  V0 E  r& `% a4 w
to setup) x% y; ?! [' B" g0 I8 p
  ca
; F4 `. p; p3 ?3 ?  set max-grain 508 l9 x% u: ]* g/ ~8 g# d( k7 ^) e
  setup-patches" f; w+ l1 l! m, d4 e& B: d! S
  setup-turtles
# `# L- M* O3 q. M/ P. B1 W  setup-plots
8 h. c8 t$ o3 k0 a" h2 V3 m" e% f* s1 g  update-plots
) f+ G( M3 B! F3 ~end6 v9 y3 v; t5 K4 r. T7 B
to setup-patches
$ v& r! c  ]9 m8 [0 z" k9 _  W0 y  ask patches
; G; h6 M) G# E. P; [    [ set max-grain-here 0, J( d: [! n  m, f! J
      if (random-float 100.0) <= percent-best-land
" @$ [7 D, G8 w" N3 Z/ i% u$ z        [ set max-grain-here max-grain
+ e, w! T3 [( \1 f5 n          set grain-here max-grain-here ] ]1 Z( m- N& S3 [; k' E* A  V
  repeat 5/ G2 K" j) F( P4 i" E- f0 i, s2 ?
    [ ask patches with [max-grain-here != 0]
( d( x9 S; F, Q! F        [ set grain-here max-grain-here ]' \' m: C8 i7 O0 s; a
      diffuse grain-here 0.5 ]
* A! j, c% v# `! ?( Q  R; S  repeat 10; L; w) v! l; q+ V- Q' {* w+ G0 L
    [ diffuse grain-here 0.5]         
3 ?; ]3 R$ {3 ?7 E* ~" H  ask patches
9 u: J& A; S8 b' m* a& Q    [ set grain-here floor grain-here    * ?; O0 _2 g& u6 I4 O7 [' Q  r$ o- y
      set max-grain-here grain-here      
4 m- }  L6 b" S. ^      recolor-patch ]8 |+ {: B. B" u. C
end9 C, ?! r, Q" k5 G0 I4 `
to recolor-patch  
; W+ O: e+ o# [3 S" a  set pcolor scale-color sky grain-here 0 max-grain: d; _& d! v. r, \' L
end
' F3 ~+ s* m4 c! o6 f2 j  U4 A0 Gto setup-turtles
" d; I2 C9 ^4 M$ z  set-default-shape turtles "person"1 s  y/ O& f( T; U& _5 c
  crt num-people
1 K! K0 O9 E; Z+ Z% o! c0 F& C7 Q4 d+ {    [ move-to one-of patches  
) z) q9 e2 L; \2 u3 a5 e0 \      set size 1.5  $ O) e$ C8 k+ ^* D1 S- c
      set-initial-turtle-vars-age
2 c+ h' _8 q3 s  E3 m# V      set-initial-turtle-vars-wealth
! L6 \# g" r& x1 G( d4 J      set age random life-expectancy ]0 p8 X7 c% j. c
  recolor-turtles) ?/ ^% `, F! J. _8 @
end
  ]" b7 c+ n/ I
7 y9 e7 X3 {9 X5 Rto set-initial-turtle-vars-age# e2 r% K  n% h/ O
let max-wealth max [wealth] of turtles
3 r" {" s$ _. e7 H* I( H    - Y9 ~) l! ]9 Z* L* k1 J: O
     ifelse (wealth <= max-wealth / 3)
2 Q3 a5 d& {; k" L! g" \. Z1 q7 }        [ set color red % u- p5 e9 B4 s2 Q7 {
          set age 0
2 l" ~! |- h$ L7 j/ H- }  y          face one-of neighbors4 ' |2 O9 ^5 i3 P1 F: f, }
          set life-expectancy life-expectancy-min +3 ^9 M8 l6 f9 C% ?+ h3 W- w$ ^
                        random life-expectancy-max * e$ }  C( o6 s
          set metabolism random 1 + metabolism-low
- y2 X. k7 M" I8 y0 q          set wealth metabolism + random 30
+ I/ Q* k' b2 t  R% ^3 x+ X" Q5 p          set vision 1 + random max-vision$ K" m0 R# f. ^. z
             set wealth  wealth +  Wealth-inherited-low ]
' g' H" \/ d, l  d) Z, j        [ ifelse (wealth <= (max-wealth * 2 / 3))$ k, T8 I* J/ K, S' M" g
            [ set color yellow % h+ i6 V. K; N! a( k: j
              set age 0
5 Z: X# |% ?6 N1 }" x2 g              face one-of neighbors4 0 e. _$ o+ s' P# w8 h
              set life-expectancy life-expectancy-min +
, |' d# E& J. @4 d$ V                        random life-expectancy-max + 15 J0 c$ v4 F  G5 K1 ?3 z$ W
              set metabolism  1 + random metabolism-mid$ n" o& Y3 Q  N0 \+ N" A
              set wealth metabolism + random 30# i6 S4 n) W7 G" Y& k* B9 I$ P
              set vision 3 + random max-vision' M& ]+ ^: c- t
                set wealth  wealth + Wealth-inherited-mid]
8 t! }# s% {, Q) \  x: C            [ set color green
1 `. |8 v( o' b2 Z0 G1 D1 x              set age 0
! a* M  C" r4 V- P  V# d( o/ u4 R( P              face one-of neighbors4
: L! F( o/ R  I% \, o" l              set life-expectancy life-expectancy-min +
) J7 O5 s3 q4 C0 u' O$ _7 v# K                        random life-expectancy-max  + 2
  I  ?/ i3 y, Q. J& I$ |              set metabolism 2 + random metabolism-up( b4 a! t, I- J0 b5 f) {
              set wealth metabolism + random 30
" G( l) W+ H, s# X& z% b              set vision 3 + random max-vision
' p: Z7 @, y% L9 Y1 Y0 t; w              set wealth  wealth + Wealth-inherited-up ] ] 4 f2 V' M+ X6 ^( G) e. O

5 M2 y- C0 ~. s- ?- C  Z: v7 r4 bend7 `0 j3 h' e  ^, m6 n/ e
to set-initial-turtle-vars-wealth
* V1 D" o0 D/ h% M let max-wealth max [wealth] of turtles
8 O7 s! X2 d3 G% t4 V          set age 0/ u$ e9 L8 ?5 z5 \, E! A4 ^
          face one-of neighbors4
2 @( I% d; T6 W7 e" f% x+ m          set life-expectancy life-expectancy-min +2 O# i* G$ d; x* v' y1 W0 _
                        random life-expectancy-max
4 [+ y8 I/ j% n4 V          set metabolism 1 + random metabolism-up- |7 `  F9 }( m; e+ C. |% m
          set wealth metabolism + random 30- f0 y& F& g" I8 [
          set vision 1 + random max-vision 2 ^% q# Z" m; K& y
end
+ Q- K; E$ N% u( ]- L; R) N/ gto redistribution
, v' m  w$ y3 s) N+ o; Plet max-wealth max [wealth] of turtles5 A6 C+ V- K; B( [& k7 y% ^, @
let min-wealth min [wealth] of turtles
5 Y/ R) C3 M3 ^if (wealth <= max-wealth / 3). R0 Y8 k( U- u) ]3 W
[set wealth  wealth + Low-income-protection ]
2 E* t$ q! `+ B6 \end
7 ?1 _6 K+ k% j5 T8 |5 S* b         
. D# M: K2 E$ H: Hto recolor-turtles" _/ B5 R* Y; O) S  n
  let max-wealth max [wealth] of turtles: Q" H# Y' Y8 z. r7 `6 T3 @2 o/ ^
  ask turtles
$ @7 {' d$ K! k   [ ifelse (wealth <= max-wealth / 3)* Y0 ~/ Z( l9 x& m, N. P2 N: z
        [ set color red ]- \0 [# V) m& }  F0 D* f, J
        [ ifelse (wealth <= (max-wealth * 2 / 3))
" y2 q& C% L7 M+ n* p1 y( s            [ set color yellow ]
- {' C& [) U0 b4 y            [ set color green ] ] ]! h( i2 G6 b' t6 b9 W0 T
ask turtles [ifelse show-wealth?3 s. b8 |: q* H" J  e; v0 S
    [ set label wealth ]% d! \5 t# G7 |6 n& K5 f* P
    [ set label "" ]]
6 H+ ^# g$ U$ m7 Jend
; w! n, c1 l# B1 m5 e
  w& Q3 c8 X" ^: K' l7 uto go, H) X. N. E6 d9 @
  ask turtles* [7 ?1 ^+ P- g) n' o" h* J5 {
    [ turn-towards-grain ]  
% }& J  {7 g: E0 L3 Q7 v- u  harvest
  A  \! X+ y8 n" F. F! K' ]2 G6 b  ask turtles
# T3 p; @, q4 L; w9 L+ O, u- J) X    [ move-eat-age-die ]/ |& F# y0 A+ r. c6 e- V
  recolor-turtles
4 L6 X) {' b: ^' {  if ticks mod grain-growth-interval = 0
) ?  [6 o* {) s7 X; }    [ ask patches [ grow-grain ] ]
! p8 R! k5 N  Z7 e$ H% `* n, P   
" \! i' H/ \+ V; L0 Q( j  if ticks mod 11 = 0
+ R1 ^/ W* Q- ^) e' ^, @  [ask turtles
2 \7 F8 G4 i* Q$ D' L  [ redistribution ]]
& b- A: W& U; K% h4 S/ ~  if ticks mod 5 = 0/ X8 x6 f8 p2 _( g1 W
   [ask turtles
# t4 ~$ _" v: _" t# \# ~  [ visions ]]' x# l+ R- S5 P; R! G# Q
  tick2 `  v5 ?$ o; {* E" B8 W4 D9 c6 [+ r: P2 ?
  update-plots# v3 P( d# d8 X' d3 i
end
+ h( H$ N! q/ Z+ I+ qto visions1 M8 K0 ^0 h! l- e- [8 I# [
set vision vision + 1
; N8 s. J& Y4 Iend
6 B' [5 j& ]- l1 i$ p* T/ h5 y4 P) `% }! k$ q  z
& b7 Z: s' V. H3 _# ?' T. U( v
/ j" L; V/ ]7 v$ l/ n  k  ^
to turn-towards-grain  
/ m" `$ c0 ?7 A0 ]: K  set heading 0, ^& N( p, h# j- D
  let best-direction 0
: l4 C7 K0 X& |. E( S  let best-amount grain-ahead/ P4 [! R. G: I
  set heading 90* j& `' Z/ N) N0 @; E2 k1 k+ E' [
  if (grain-ahead > best-amount)2 P; w9 W, E; j7 S
    [ set best-direction 90& I0 f5 q% V0 b5 H: e
      set best-amount grain-ahead ]
) a2 H) Q5 j* V  set heading 180
- v! w2 l. [9 n  if (grain-ahead > best-amount); Y+ L1 `4 x/ w' o2 _; t% [  s
    [ set best-direction 180
) q9 m  B, N+ s& c5 e2 m      set best-amount grain-ahead ]  ~0 b4 b2 Y3 f( A/ f( R
  set heading 270; f/ Y# w  k  T, X
  if (grain-ahead > best-amount)
$ P  i+ J5 {; H# a+ V4 n$ n    [ set best-direction 270
' W" ~# @/ j5 U      set best-amount grain-ahead ]: ]' Q0 u& `; L3 C
  set heading best-direction5 n. c% y. y6 Q
end& i: ~$ D, n' W; R5 O' S

% a& O9 ^* f2 G: @
; ^) c' G$ b* R. `7 C; N' T6 Fto-report grain-ahead  
( P; J+ c$ i! o# |  let total 0
* L" b! d( F& l% n  let how-far 1( L0 L- c# D0 v
  repeat vision8 }6 [& L" @+ b4 r' o% G9 J
    [ set total total + [grain-here] of patch-ahead how-far" o' |' t0 Y, G. D
      set how-far how-far + 1 ]
9 k$ ~1 W. F" [5 X* I! B3 T  report total3 J; T0 S  Y- c; y
end
, Y8 s/ o& A8 E2 b( @0 u# l
  J) a; d& j/ ^) X" Q& Eto grow-grain + U& w! z! X( p" i4 y+ c
  if (grain-here < max-grain-here)
' \: Z. m8 p& _4 T7 ^$ z, I  i! n    [ set grain-here grain-here + num-grain-grown
, e6 L2 P2 n  a4 F0 O/ C! g      if (grain-here > max-grain-here)
2 h* t9 E2 D# Y4 W$ F9 z6 r        [ set grain-here max-grain-here ]) X; Z" [/ g. Q
      recolor-patch ]
( J! |; y! ^9 v% U0 G8 r/ \+ ]6 bend
& ]1 g* ]: b8 N* `. G! Rto harvest
9 E& g9 H3 Y4 U8 l) j1 A  ask turtles% s1 \4 l+ z* \$ x3 r" s' r3 w( L
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
  ?" T- L% p3 H; P+ F  ask turtles; y. {" s. t' X
    [ set grain-here 0
; k; Y' z$ V( Q. a4 o5 C  |      recolor-patch ]5 F# n" V" F& ~$ D! ]( V7 x% d8 q6 c" c
  / a) i( t' `; X3 d+ ^
end
$ v, f* y$ Q$ `- b# m( ]2 H* c  V7 f3 }9 d# i# ~8 h& W8 p
to move-eat-age-die  
6 b; W3 o4 b9 w7 e9 J; u5 l  fd 1
2 W! a+ J/ U8 J) m0 M  set wealth (wealth - metabolism)
. e2 f6 Z$ y7 S8 h    set age (age + 1)
- o1 M) y0 U" b/ ^( n- |4 k! T  if (age >= life-expectancy)' L0 g, R" g6 @8 b; L& B/ R
    [ set-initial-turtle-vars-age ]  S' I% v# r4 U6 M3 }+ C% W' M3 Z6 e
  if (wealth < 0)
7 D- Z; f8 t4 \( b    [ set-initial-turtle-vars-wealth ]
& q2 z* x4 p9 e7 n% t' Z   
* E  H" a6 H" y0 s1 w- W- G! \end
- |, Q. K5 @* C$ [$ V! J8 B8 o% h* o6 }7 z

* x' E! r/ ^% E+ q3 R) Zto setup-plots
3 Q# u: ?1 R3 T" @1 P' s  set-current-plot "Class Plot"
3 w" Q7 k- ?5 T9 g7 m- M  set-plot-y-range 0 num-people
) }' J* D7 Y2 v9 y6 P  set-current-plot "Class Histogram"" y( G& ]3 p1 X
  set-plot-y-range 0 num-people; G/ a7 V) _# [4 U; U$ F
end9 k% t  h- x& L- {' J3 Y' L3 J

& M4 G7 {8 ~( zto update-plots
1 J! s' Y8 p0 S. E( i. p2 d  update-class-plot
- Z; `! U# N8 ?* R4 q3 {9 Q9 q  update-class-histogram# _# T4 a! c5 Q
  update-lorenz-and-gini-plots
' P& v0 U( ?- A) ]5 o: ^end
2 I$ `% l& n3 q8 ~2 j
4 @' G) D- i6 R+ X7 [to update-class-plot+ E) D3 i+ l. m* J. g, `/ ]
  set-current-plot "Class Plot"
4 g6 s5 L! L0 Z' O5 |& ~  set-current-plot-pen "low"/ X. J1 ]" a' C( e, b
  plot count turtles with [color = red]
# h1 ^  d$ G! T( v7 ?) l  set-current-plot-pen "mid"0 M, g4 e+ @# x6 n/ c" t
  plot count turtles with [color = yellow]
' `. C1 |' S3 _! N, n  set-current-plot-pen "up"& l+ W7 ^' a! q
  plot count turtles with [color = green]
/ R$ G; d, i, a1 c2 U3 Z. E6 pend+ P% f0 D1 m6 K4 S) c8 q) K) k9 G
1 m  O  \+ T( ~$ F9 h4 O
to update-class-histogram' x* e' z7 D8 |+ \4 ~- Z: q( j
  set-current-plot "Class Histogram"
2 S; Y! H) O' Z% S# X$ m  plot-pen-reset
% x- G7 Y# Q% F9 g" ^: P9 {  set-plot-pen-color red
1 C! d9 }. b: I6 H9 E  plot count turtles with [color = red]
( o9 J+ s/ t- R% ]% V  set-plot-pen-color yellow
/ L8 o8 ^1 E$ e2 d  plot count turtles with [color = yellow]
# @: k% G4 x0 g* _  set-plot-pen-color green1 r, [' D! U( ]$ B6 l0 G8 \2 C
  plot count turtles with [color = green]
1 A5 h: a! A( Q/ e+ y) Z+ xend. f; B) v& e( b% N
to update-lorenz-and-gini-plots2 M9 J, g: W: J; ^1 f9 j
  set-current-plot "Lorenz Curve"" E" C# V+ v/ B! m7 t
  clear-plot1 q" i0 ~! H" c
$ `4 X: \2 f4 e" g  }  d& k
  set-current-plot-pen "equal") y, D* a! J- W) U& \
  plot 0
" Z2 e' g. I$ W* Q  plot 100
2 K8 E; p9 i1 _; N& F9 s5 N$ \& E0 m3 g$ p
  set-current-plot-pen "lorenz"
5 x4 Y9 C% t/ l. @( F1 `: @5 W' \  set-plot-pen-interval 100 / num-people0 J8 ~8 L. p/ Y. t/ B& \
  plot 0
" O' s: V" e) @. \2 o; N( {! r" D! P1 v. {7 E" D( z
  let sorted-wealths sort [wealth] of turtles
  N  R+ W4 R7 |  let total-wealth sum sorted-wealths
+ c. h* |/ r7 B# e1 u1 C4 K  let wealth-sum-so-far 0# Y: Z  s: c, B% b& q! V0 X
  let index 0
) E4 f) D6 X- j" I8 {* s: v; ~" |  let gini-index-reserve 0. ~+ x( g* [& w0 A1 Z

6 S! k( k8 z- a4 N- l  repeat num-people [2 i. a- |/ z& r: k1 u5 ^# }2 D
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)1 M' @" A  @/ N& D  ]
    plot (wealth-sum-so-far / total-wealth) * 100
9 `& W) I, `+ o* O    set index (index + 1)! Y% V+ P/ m) l% n( d8 G
    set gini-index-reserve
/ U9 B& u& V2 p% I% i6 ~# m      gini-index-reserve +
" Z3 C. o8 ]& ^% v& c      (index / num-people) -
# a# W& ?  F( I9 S4 v      (wealth-sum-so-far / total-wealth)  q1 m" J: W6 W0 v6 u
  ]- p( D) V0 i3 V" u" K
' v! C2 x5 L) d3 r: H
  set-current-plot "Gini-Index v. Time"
( o8 q: G8 ~8 o+ P' X- {  plot (gini-index-reserve / num-people) / area-of-equality-triangle; o& A& G5 F( F' D' P# X
end) J1 x. [, e. B
to-report area-of-equality-triangle+ R3 b7 @1 f- Y+ }
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)1 O9 L9 e; s9 N2 R
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-9-14 06:51 , Processed in 0.015615 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表