请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
) R: U7 K& v2 Hglobals
1 c# D( ]! L/ r$ e[1 e+ }- \! q9 D1 ^' W5 X2 q c: E
max-grain
7 |0 E4 Y- w- F1 M
+ w4 w; W. i5 d( r$ n! G]8 L6 E2 T( x$ ~7 T: r) w' s
' ]! Z6 d( w, \& g% Y0 c' \
patches-own
: X& G; z( H/ u" l[
$ f! k K: x8 t2 p' o grain-here 1 i, E5 q1 B9 G% L& ?- R
max-grain-here
) M+ g/ b' ]! u4 T]6 t G8 B6 y1 N( P; g- w: N
0 E4 I/ Q6 f. U! A$ B% v8 Kturtles-own
, {& ^) r( M/ S |& i$ f" @[
: ?" J+ b/ L3 @6 G, j age
" z3 g8 l& G3 a wealth
1 X) I5 Z. ?1 Y$ j# F life-expectancy " E/ b p; r2 p
metabolism / b$ f5 s8 j5 z
vision7 H$ `) d: F3 f/ a z a9 q
inherited
- c$ s1 p7 r0 ` V3 y]1 u4 f" }% n8 X6 T* I% E. y
0 T S* H4 d$ Y& ~! u
' B/ r0 f" e) k/ Gto setup( ]; x, J e, `( G J
ca/ e* L+ B+ C8 _$ n! n+ Y
set max-grain 50
! A3 g( \& _( D$ q1 N, a. b setup-patches
, H9 p$ L+ I+ E5 C4 ^1 `8 [ setup-turtles
; p! u P3 C3 Y s setup-plots
) P! A) h: M o' [1 y update-plots
4 |/ {% w. c5 A) |end X5 T- y3 P0 p9 {( Q
to setup-patches
U: _+ c: D+ _" J ask patches, O4 J! T6 s4 R( b5 U7 J
[ set max-grain-here 0
1 F1 J4 ]+ A: [2 S+ h8 _ if (random-float 100.0) <= percent-best-land
, m# T& _. r0 l [ set max-grain-here max-grain
8 K! m+ ?. O: {* L( O8 b. i0 m set grain-here max-grain-here ] ]8 o; w. D' ?6 w* K$ g$ }2 W
repeat 5
0 k7 M" y7 f( w3 ~. g [ ask patches with [max-grain-here != 0]
* d) U$ R& j( w4 e3 g- P1 G [ set grain-here max-grain-here ]; B! r! E8 n, u2 U3 e
diffuse grain-here 0.5 ]
& N; k1 m' A6 V9 o) ~' |9 } repeat 10( [) l7 h8 s9 ?( g0 Q7 u. z
[ diffuse grain-here 0.5]
* y3 C/ l6 M3 M1 |$ u9 q ask patches3 Z. a8 M0 m/ A
[ set grain-here floor grain-here ' r4 Z0 T$ ]% E( f2 [
set max-grain-here grain-here
- I% x) @( f; L2 z% | recolor-patch ]
( E) S/ J# l5 T8 X( J4 Q0 Y9 `5 Eend
5 a3 K! U2 P; @* _to recolor-patch
* F, @# D! u4 i$ { set pcolor scale-color sky grain-here 0 max-grain
) y9 J- o n& @# k# `4 h5 x+ [8 Lend
0 b9 n+ V) D8 @0 k0 t) I8 Hto setup-turtles, u: `: {$ ~/ O; @
set-default-shape turtles "person"
# r' R: C- z/ K: g/ F& f' { crt num-people
2 @# x8 N+ _+ J: Y. P' e% R+ U, w5 J [ move-to one-of patches % |- {8 z& ~; s0 S! h- q
set size 1.5
* _0 i& r M+ a% @0 K" ? set-initial-turtle-vars-age
: |0 p* i: P r9 \& ?4 o set-initial-turtle-vars-wealth8 W# I9 U, G& t2 [
set age random life-expectancy ]
* e; C) P8 r; n5 F2 Q1 H recolor-turtles: @: @; z6 ^2 f9 l& R6 D
end
4 F) a- t N: h- h, d" g1 p; ~' O J. w1 W+ a9 c
to set-initial-turtle-vars-age$ z* C+ g- u, y9 q& g
let max-wealth max [wealth] of turtles8 Z3 }( [" _$ |; }# n
( O5 G' O! }+ z8 K: Q& i ifelse (wealth <= max-wealth / 3)
# g1 D# x; q" J" S; s [ set color red
; z5 _( ? c$ G* _/ ~% `* f set age 06 j; |9 b/ j8 i
face one-of neighbors4
: ~* a# Q5 }: p6 l) f; A/ R8 C. U8 I set life-expectancy life-expectancy-min +
: o. u, ]3 y& z# S2 Y random life-expectancy-max 9 ~/ z' [- o# Z+ l" {
set metabolism random 1 + metabolism-low
. J0 a0 ]- @7 w0 e/ t set wealth metabolism + random 30
. l# _% K% ~4 X! R2 z7 p set vision 1 + random max-vision9 l# x. s& O: |
set wealth wealth + Wealth-inherited-low ]6 c) T f) j* B4 Z
[ ifelse (wealth <= (max-wealth * 2 / 3))
: `/ |0 i) s# z; w- E- Y [ set color yellow . g6 S8 R" B4 h* a) z1 Y
set age 0
% K% I! e9 P% b9 @" J9 Z. A |% o# t face one-of neighbors4
' p" x4 S$ x2 g8 Z set life-expectancy life-expectancy-min +
2 G# { @8 I# h6 N7 D random life-expectancy-max + 14 j+ H5 y' Y5 P9 w- D
set metabolism 1 + random metabolism-mid; w( q- X( A/ w; D( T# x Q: a
set wealth metabolism + random 30. D6 @+ q) y# X( ^- T6 a
set vision 3 + random max-vision, ` I" b# K0 M& a% R% q
set wealth wealth + Wealth-inherited-mid]5 V6 @, h- o; y7 `! A' M
[ set color green ( T& Y! I" \ g. K; u" p, M# _7 R
set age 0
5 c0 q' m( L3 o3 D( A9 f face one-of neighbors4
7 v$ o* I( u' q: Q! s5 C set life-expectancy life-expectancy-min +6 k, ]$ ^& e) ?& u3 I
random life-expectancy-max + 2
% N) R5 x8 n' ~: K: G# r: d+ S+ L set metabolism 2 + random metabolism-up- y: H& s+ I# I% g! j8 H1 O
set wealth metabolism + random 30, C/ u9 V& J& }' t4 u/ A v4 ]( L
set vision 3 + random max-vision0 i! n: n8 u ]
set wealth wealth + Wealth-inherited-up ] ]
# E. y6 o1 n6 I* C+ m
u% @2 @. r0 C& cend
( g; _: o9 _! z- x* T1 u# j* j( Lto set-initial-turtle-vars-wealth2 F. I* Y1 i9 E$ V3 [
let max-wealth max [wealth] of turtles) W5 c% J( M2 q4 A% k& w1 q) `
set age 04 n0 C2 J$ E, w& b Y
face one-of neighbors4 " h( e. D, S& ^# w+ {! W
set life-expectancy life-expectancy-min +
& n. ?5 V1 s7 |! x9 Z# _ random life-expectancy-max - v! w. H5 R, N: G# _8 } h2 d
set metabolism 1 + random metabolism-up6 t+ v6 g: N, s
set wealth metabolism + random 309 {) W" ^6 o" }- g' C+ y9 ?
set vision 1 + random max-vision ' z1 \$ ~* z; y5 H% W7 m
end: Q$ P8 v8 ?9 l/ Z
to redistribution
6 V# K2 T& X- F& H& k* Hlet max-wealth max [wealth] of turtles9 j6 F5 u/ B' S6 U7 N# G( E/ ?8 u
let min-wealth min [wealth] of turtles1 D# ^% _0 ~% y2 J+ l
if (wealth <= max-wealth / 3)0 s' }9 m7 Q3 H$ @5 i/ F+ ^
[set wealth wealth + Low-income-protection ]
8 L+ ]% G" h( ]# }* Cend
% ?0 D) {4 C9 d 8 s. U+ D; v x
to recolor-turtles6 j0 i/ @0 Z$ V |3 E" C
let max-wealth max [wealth] of turtles& Q/ z* R/ S9 D. F6 R# ?2 ~
ask turtles
( T+ }/ c$ s3 v- I1 \) H [ ifelse (wealth <= max-wealth / 3)
- V2 G h7 F" p. W [ set color red ]
, h7 Y) H( O0 u' z/ Q [ ifelse (wealth <= (max-wealth * 2 / 3))
! n6 m/ B3 ]& H& y: n [ set color yellow ]: Y- ~. L1 d# x$ E
[ set color green ] ] ]
- c9 P) h+ ]8 A k& V5 p9 ~ ask turtles [ifelse show-wealth?2 ^+ b8 s7 D' r; O, _1 T
[ set label wealth ]9 J' T4 K% k/ A- x/ K
[ set label "" ]]. V/ u; J/ u) p* Q ~; I
end
! H9 w- F( k* e. r8 S, P. ?" R8 @: }( |/ O! u. p
to go
( S7 O! Z! q+ q0 K9 e1 g" D0 ?$ j ask turtles3 i W0 M9 l; s7 V4 Q
[ turn-towards-grain ] 4 v0 a- S R9 [# x/ j. c6 G- @) J5 \
harvest
/ |2 ]+ X0 m8 F x; l ask turtles& I) d, h D" l5 L5 S( ?5 v$ A
[ move-eat-age-die ]
" u" n6 B# [9 O# b+ V; } recolor-turtles: o, o: o8 {, n2 C
if ticks mod grain-growth-interval = 0. e2 B" K% t0 a# s, Y
[ ask patches [ grow-grain ] ]
$ `. j/ A1 `2 f7 [- A 4 _8 z! T; d5 p2 l
if ticks mod 11 = 0
) k1 O! l* |' O4 ^ ~+ G* W [ask turtles. m9 N0 t8 M7 K% h: |+ r1 F# n9 n
[ redistribution ]]
8 v% |, \! m3 f0 H" X if ticks mod 5 = 0
; `" `0 L2 i5 F7 f/ g' N: F) S [ask turtles6 K" z6 a7 O' w! p3 L6 \* P
[ visions ]]
% d8 S3 C) f r+ P tick
+ z1 C) g+ I- \5 R! p update-plots$ ~4 x; Q: `: q: N8 E
end
* f& g2 F B7 @ w: V) v r/ [to visions6 Z# M0 p6 A! H4 b+ R1 \$ @
set vision vision + 1
" n7 l3 k% _ v, f# p" E9 cend" P, V' b9 t, n. b4 f
: L" e2 u. Y& Y a- i3 c* k
0 D0 m. \: @/ A% d, s
6 k8 R. F- ~$ c6 L1 l1 O# V( w; R
to turn-towards-grain ) C& ?) L% U$ D+ S
set heading 0
p' z _1 `% o let best-direction 0. d& ~% r3 Y- u( D1 p
let best-amount grain-ahead
8 w# D+ d3 s& S set heading 90# |: O& v5 ^6 u7 `# F m- E
if (grain-ahead > best-amount)% M! n' a. s+ p" e. G8 z
[ set best-direction 903 C" f1 K$ @! x
set best-amount grain-ahead ]) U/ f2 A9 t* F+ }- g
set heading 180
! B' O% k- \8 B [) c if (grain-ahead > best-amount)" s, d# f) {; N
[ set best-direction 180" d$ Y! Q9 z. N2 e6 K
set best-amount grain-ahead ] k$ o0 N7 b @, E. R! [* {/ R: f
set heading 270
7 M& M- M0 O) J/ C; `7 Y$ K1 V6 C3 I if (grain-ahead > best-amount), K8 K* L" J- G) ?- l0 H
[ set best-direction 270
) s* B8 ^( b8 k3 d8 v4 R) U set best-amount grain-ahead ]
$ S. b0 u* Q, w" f1 w set heading best-direction0 M5 a/ o6 b# T: J* s' r( P
end3 o6 Z* Q8 x+ _8 l
+ l% n3 }2 T# ~, l7 Y) R
6 n) w+ D0 W" g( W1 `3 B" q+ q
to-report grain-ahead
& x! c6 k Y$ U, I+ M/ V2 c: Q let total 0( T# \4 m, W7 Y4 F0 G! Y5 W! s
let how-far 1
$ g) f3 ]1 j4 R, p$ k- g- { repeat vision
9 {; u3 n/ g# j& F1 i [ set total total + [grain-here] of patch-ahead how-far
- L/ N k I0 f; H) t+ Y+ n set how-far how-far + 1 ]& @, P* r) j2 a! o1 i+ k
report total
& ]$ c+ ^& c5 Jend8 I, Y: C( e* _9 V+ T
4 G. o, E9 K; {3 |* ]/ A$ x1 Yto grow-grain : s! v# h; e- [( k- m" o
if (grain-here < max-grain-here)
, p0 s* r* ]6 Q: O( M4 y% A, } [ set grain-here grain-here + num-grain-grown
7 q5 U; M/ c" M K9 `& g# V& X if (grain-here > max-grain-here) 8 a0 h4 |( S9 B+ P' S4 c
[ set grain-here max-grain-here ]
0 `/ E* s4 c7 C/ |. N7 b+ G8 y: ] recolor-patch ]
/ ~: p: d8 ?$ O2 u9 ?' bend
/ H$ _# C4 ]. G: V0 Qto harvest: n: S+ I) X: B
ask turtles
' g/ g' j* `5 q# ~3 m' r [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
9 Y- B$ p5 i5 L! k( ^6 Y ask turtles2 Z. Z1 a3 Y0 j1 {0 L: @
[ set grain-here 0# D; Y+ m" q1 F# z( N
recolor-patch ]
9 l# v j G8 S3 D ; C$ S9 O6 k) P/ t$ ]+ ^
end
3 b- H" j& | p8 R# e: V h% W2 {, ~+ V
to move-eat-age-die ' Z) W" k* i9 ^7 J# f0 F
fd 14 Q+ J0 E8 x L- Z; `* x9 w
set wealth (wealth - metabolism)
: v1 c: r z6 a$ K9 @; E3 J1 G set age (age + 1)0 F7 l4 G g& I6 F# Q7 `% `1 u% M
if (age >= life-expectancy)
& p# h6 H' u2 p [ set-initial-turtle-vars-age ]# @5 C1 o/ K; L
if (wealth < 0)
; O6 P' P. I$ G [ set-initial-turtle-vars-wealth ]
2 _; B4 Q; R+ p9 j5 C
- a4 T3 ]) y9 T1 V9 H0 |& G( L% Cend* l9 S7 @9 `2 d" h
. e6 }" m/ e; v4 K8 B/ c8 e8 q8 k
to setup-plots
1 k P% R1 U/ Z, j% ^ set-current-plot "Class Plot"8 G- J% ^( I0 k% z- c
set-plot-y-range 0 num-people l$ w3 g5 ~' V: E, l7 s, c
set-current-plot "Class Histogram"
8 {5 [) t. n: C. C7 K set-plot-y-range 0 num-people* `7 e. F$ Q* q# [3 }
end. V+ Z/ M* |1 Y1 Q; ?6 x
0 ^$ t5 }* t3 E
to update-plots7 H6 J8 o; K& c3 q
update-class-plot
& i1 i- s" }5 [. \2 s1 w8 u" V update-class-histogram5 f1 L7 _* E) Y4 l; w
update-lorenz-and-gini-plots
$ T7 |4 h! X2 W; b; `3 e" _end
2 R2 R1 A) z: H: v; n$ e% ^' g1 B
to update-class-plot& u5 v% G. i/ p' ?# `
set-current-plot "Class Plot"
3 F+ ?( ^0 f6 x, H set-current-plot-pen "low"
8 K% z; b2 D0 O plot count turtles with [color = red]4 p r7 G: \+ t( Y
set-current-plot-pen "mid"
N' ]& g4 O: z% u, C9 g% F plot count turtles with [color = yellow]7 D; O( I" K$ u2 h1 a, b9 a
set-current-plot-pen "up"! U- _$ l9 W) y
plot count turtles with [color = green]
7 u/ J: c( [9 H+ E% q$ [% kend
x8 ^+ Q& h- j* k" v+ ?* p5 n; q) U' V
3 q' C7 S3 c5 Tto update-class-histogram
; n/ ^4 |7 t) ?( {$ g K U set-current-plot "Class Histogram"+ z7 G3 \# W: \) b& F
plot-pen-reset8 U0 m# ^- l) X& K/ V
set-plot-pen-color red H; L4 S4 U) `* Y7 B+ y/ F0 o
plot count turtles with [color = red]* n" | R: J3 [$ z- p9 {
set-plot-pen-color yellow
& d# l; V0 Z# X4 E$ i# Z* O plot count turtles with [color = yellow]
8 y, @9 W5 ]* `4 s% x set-plot-pen-color green
2 Z$ }5 l8 ]4 ? plot count turtles with [color = green] m5 a3 ]% n8 Q: q0 t# J
end
- x7 [; _1 W+ w0 Z# ~! Y% Y. Fto update-lorenz-and-gini-plots
8 Y* C& |/ ~2 y set-current-plot "Lorenz Curve"
0 [- ]$ a: @+ s% V: i, E clear-plot6 u/ X) m! T$ q0 [5 w& T- w
7 l a: |2 T: m; i* z
set-current-plot-pen "equal": P* S; a7 U) q4 R( C4 |: w9 ?
plot 01 p. x8 q P, Q2 x/ O* k" m! K
plot 1003 ^- ^; \8 @+ j& v( ~' a
0 W" Y; S$ ^9 h) _. ~ set-current-plot-pen "lorenz"
3 k/ Z1 ]* c" r$ ?" N8 u+ a set-plot-pen-interval 100 / num-people. a- ?, C! v+ V$ u4 a
plot 0
& z6 ?* L1 t; w) V6 R) I/ h* V: f) A& y. c2 I% S4 G1 ?
let sorted-wealths sort [wealth] of turtles/ h+ j7 t6 g! \# _, `' ?
let total-wealth sum sorted-wealths; G: U% r, T9 N8 s- }
let wealth-sum-so-far 0/ ?& g, G5 o6 _
let index 0
0 X( z, @, L6 j; y let gini-index-reserve 0
% X/ F% P, j2 o
9 j5 |/ R% U. ~/ S! f& a repeat num-people [. ~3 ~( W( d8 w
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)7 n' I% N2 H5 I+ l
plot (wealth-sum-so-far / total-wealth) * 1007 n! ?% `: }& _1 e/ @7 ^5 s5 Y; c
set index (index + 1)
& d8 b6 N' ?8 O& x& A' H set gini-index-reserve
4 s) S+ `8 r3 W3 t4 J' Y gini-index-reserve ++ A v& U- X6 d$ U
(index / num-people) -3 J0 h: O; f: \" v0 J
(wealth-sum-so-far / total-wealth), v" S) G% k+ a4 T
]
2 q8 x1 d7 h0 c s( n& c9 Y
) Y- [2 W1 b- _3 H% t set-current-plot "Gini-Index v. Time"; C1 H2 A8 i+ _9 D
plot (gini-index-reserve / num-people) / area-of-equality-triangle' Y( o ~1 O, y# O) V$ s
end6 o/ Y G/ q- e
to-report area-of-equality-triangle
4 Y8 u# l+ ^- Y. M! Q6 Y0 u report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
9 ~6 M! r- x9 m3 t1 vend |