请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
7 Y+ k. a3 @) f k! }globals& l" F4 V7 ?# O: P% S+ `
[
5 g# ~* k( O' f" b1 X t7 E max-grain : f3 ~8 H2 r: C' W# L) N3 N
' n- L* s6 I, @: E1 v]6 l) ^; S, t) Z- `
. Y! l; b' v" r4 lpatches-own
/ U [) T2 z- \1 \: J2 @[4 |- I$ @6 |4 G6 ? D0 a* s5 ~
grain-here
) J+ n% {7 U1 |6 Q( w+ i max-grain-here 2 @9 @. |% ]; y
]
5 r5 y* T; {2 c. M( j
% `4 \3 q8 z/ _ b3 b$ U( oturtles-own
' @' @2 e9 } W[
! K6 k7 E0 Z4 u) S) Q age
, a% s% G, }8 ? wealth . f% h( ^2 z" {8 j9 ]- w5 z
life-expectancy
' N: [4 N X* J2 `; e% s metabolism + j% M1 o* N8 r" P
vision
5 N) `8 G# ?9 Q- n+ D7 F inherited
# C' f3 b' a- y]
: J5 i1 s2 y/ I9 |# t, c
' k& B0 ], B# i3 B2 K
! V( w/ X: f) S2 G6 r7 }2 yto setup
& B. e/ n( v. T8 _' r+ m; Y ca9 u+ d9 Y6 L! @- f2 L" Y9 s
set max-grain 50
+ g& G5 B! q- V6 [# I setup-patches s' n' ?3 _1 Q% E: ~
setup-turtles* t. f n* t( j9 S2 c
setup-plots
7 C' u5 a6 `7 j6 G+ X6 |2 o( e0 [ update-plots9 e& j" k! b i, q
end; @# m# A) o4 K D! [( ]
to setup-patches
; _( r) v7 I' V5 s2 ]& V! E ask patches( k, `$ \! Q: T
[ set max-grain-here 0
* l& u9 s& m6 O( s" p if (random-float 100.0) <= percent-best-land4 W% L1 r& c, v! y; N
[ set max-grain-here max-grain' G6 c# Y9 c5 Y. R$ Q7 j6 v
set grain-here max-grain-here ] ]% X! h; x1 Q4 Z+ M$ g) o5 a
repeat 58 i6 H5 b, D0 V: Z
[ ask patches with [max-grain-here != 0]1 v% S4 h2 T% e9 h' t! w( m
[ set grain-here max-grain-here ]
. l' y; h. G1 T$ |. G6 w diffuse grain-here 0.5 ]
! a, [) h6 G& W repeat 10
+ a' i( G8 C1 \! I [ diffuse grain-here 0.5]
9 a& k! e8 I S* V. @& g ask patches4 s5 z2 O% `8 Y. P! ~" y& @# U7 G+ ?, T
[ set grain-here floor grain-here
2 @7 k7 @3 ]4 ~ set max-grain-here grain-here # ]1 f3 x: K1 [
recolor-patch ]
$ }* B3 X1 W! b' yend
9 o% ~- _; N& j4 Zto recolor-patch & k# m3 `' ], i( ]5 i' Z
set pcolor scale-color sky grain-here 0 max-grain; {; W8 t, V( ]" d' Y9 w
end
6 [% a3 I* }; U( t& dto setup-turtles
; n* V" b% D) ?' l# U& d5 S set-default-shape turtles "person"
( [( N( G$ x' G% c crt num-people
, U" g, h& q' ] [ move-to one-of patches
/ `- F) O$ ?$ u8 Y set size 1.5 1 D8 |: y1 U$ d8 z4 W- v" F* V
set-initial-turtle-vars-age
! ]2 J d* F- I+ O" D set-initial-turtle-vars-wealth: Z. M) M& I) j1 g7 m, r% S
set age random life-expectancy ]
4 T# S" q) H4 o# i' Z3 ~ recolor-turtles
$ h; ?4 }+ b. H* p, m& N7 iend5 ^+ M! v- ?& M3 b9 Y
* {9 o6 x0 B" W! o" l1 fto set-initial-turtle-vars-age( D0 b; J9 @8 _8 Y
let max-wealth max [wealth] of turtles
5 D1 ?5 r z7 R5 u
1 |* K0 |6 ] p- O& b ifelse (wealth <= max-wealth / 3)9 y1 X7 T4 `4 e! b$ {( Q! t
[ set color red & W8 w1 V% n* U9 K
set age 0" {1 Q7 G+ K3 @) ?' ?% G2 \
face one-of neighbors4 2 O2 v8 |% t& O9 r( o- U; d+ m9 i" \
set life-expectancy life-expectancy-min +5 P0 }9 D. [" S+ l
random life-expectancy-max , }* y; `& c0 ~2 ^; V4 p2 k
set metabolism random 1 + metabolism-low$ p. m8 `; ]! r/ _7 s' V f9 t
set wealth metabolism + random 30
9 v5 C& q( n" D9 o% K set vision 1 + random max-vision
5 `! A4 O, I5 A( w4 ` set wealth wealth + Wealth-inherited-low ]
+ E; t7 T( I% p [ ifelse (wealth <= (max-wealth * 2 / 3)); C5 q; o. \/ \
[ set color yellow 0 }) v' I( A8 b+ u. T9 j6 ]* n
set age 0: w. Y: d3 K) R9 X
face one-of neighbors4 0 k- Y# Z. Z3 Y8 m, q" I# ^4 X5 M
set life-expectancy life-expectancy-min +
; A' t: y" M3 y P random life-expectancy-max + 1
* Y: x0 `" j+ R7 L9 k# [ set metabolism 1 + random metabolism-mid
$ b" E' W2 w5 g! `& }3 q set wealth metabolism + random 30+ k' g4 N# Q0 Q
set vision 3 + random max-vision& W/ l! Z0 v6 {2 Y9 ~' X
set wealth wealth + Wealth-inherited-mid]
4 ` W0 N( O0 a( M: F [ set color green 7 f& ^- L+ {/ ?3 e
set age 0# m0 F7 i! r/ |
face one-of neighbors4 % b/ c0 R) F: T* L- y2 U2 ~' N
set life-expectancy life-expectancy-min +( g& D" e0 K' F; r
random life-expectancy-max + 2
" p0 a* f. T: O8 s$ v3 I set metabolism 2 + random metabolism-up4 r1 Q; [9 a9 A; Q# B
set wealth metabolism + random 30
9 G5 n4 N# E9 G6 p) r4 ~3 }6 Z5 ` set vision 3 + random max-vision2 W8 k) e- a- Q
set wealth wealth + Wealth-inherited-up ] ]
9 f- n: _8 z3 u3 ` : ^6 c' n0 }" R) l1 ?! c, T
end
# n; l2 p3 \1 O) Qto set-initial-turtle-vars-wealth4 B1 e5 U9 Y7 F: p d) F+ q9 q) Y
let max-wealth max [wealth] of turtles: `2 W( J7 v) z
set age 00 a8 \% Q5 o% @, e7 N$ t# q G
face one-of neighbors4 f/ h' |) Z* ?' @
set life-expectancy life-expectancy-min +
2 J& _3 i9 @* y& w6 q M& Z3 A random life-expectancy-max 2 `1 P4 q% C2 F5 F% K0 [
set metabolism 1 + random metabolism-up
8 ^. N/ d, X5 c5 Z; q$ n set wealth metabolism + random 30
& M6 w# v2 W% P set vision 1 + random max-vision
% M" L6 M2 ^9 _+ {3 l& ?end
/ n* n; W" \2 k; s M/ I5 w3 Eto redistribution
- ^+ B" O* |6 Rlet max-wealth max [wealth] of turtles
) O0 {& [0 X9 {( e4 p! ]let min-wealth min [wealth] of turtles
5 J) D* G8 l) D' U1 Z; I. ~ j3 fif (wealth <= max-wealth / 3)
I& y- U3 Y7 v [set wealth wealth + Low-income-protection ]& E( h: y: }. ^8 Y$ H' E
end
! m6 B3 ~2 x/ p$ w7 o4 n. W
$ _# I* _& M9 O4 n3 P0 u+ O" L& tto recolor-turtles7 P3 _" ?" v* P5 C" W2 x1 p( y" |
let max-wealth max [wealth] of turtles
' B0 b4 p0 S0 W! O! \, u ask turtles% P5 Y+ d) E8 @' p
[ ifelse (wealth <= max-wealth / 3)
' B7 t5 x. z$ s/ d/ j [ set color red ]
+ B/ Y- a$ T, j2 |+ r8 ^ [ ifelse (wealth <= (max-wealth * 2 / 3))
! x8 r9 i/ S- B1 K/ x [ set color yellow ]
( N- z( l+ k% g) V [ set color green ] ] ]
5 A9 T( C# E+ k ask turtles [ifelse show-wealth?
5 ]3 n [$ c( K' b3 I% f [ set label wealth ]: ^8 j% Y5 F0 S& S
[ set label "" ]]
2 |" s; w4 F2 ]& \2 Z' Tend
! q! Z1 P2 E# Y! E1 C7 v2 M( W: u- i) Q
to go
# [. q1 I6 v5 Q1 ]1 b/ f ask turtles- Y2 t* d6 o) v: W/ D
[ turn-towards-grain ] # E6 l8 q9 Y* Q2 s1 V
harvest4 A0 K; ]' n* o& A; v3 r
ask turtles
! A# p' [+ _# S' r4 R [ move-eat-age-die ]9 L, h2 |! ?2 s# e: g9 ^
recolor-turtles8 _# ]% z, | k
if ticks mod grain-growth-interval = 0* U. r/ U" g$ ^) t& ^
[ ask patches [ grow-grain ] ]+ I& m3 @0 \, B( Z; q b! B
* D$ e/ w* o# e
if ticks mod 11 = 0
2 m+ R6 O8 n! p5 i [ask turtles$ H% k( {! c* e
[ redistribution ]]* G4 [, L2 X! a0 u4 Y
if ticks mod 5 = 0 z7 F7 p+ E" t* g: |
[ask turtles8 d# W4 E; }* N2 ~( I- ~4 s: B
[ visions ]]
% z2 y' y+ X5 ^ tick' r3 R7 v$ ?- f6 ^* O% j4 @% u
update-plots
( Q9 c6 u% G6 y: wend
7 W4 Y- X0 M6 t* r! C4 Lto visions
& i8 Q: q; O4 }/ F0 Z set vision vision + 1
) m& |, {; n9 g- y) ]end
# f Q5 I# t1 T1 d! b9 j! m- A$ X' b8 x0 B/ s0 w- @
. l, C, ?. i% ^8 g
2 t3 p% i" ?0 ]+ s& t# N* l2 zto turn-towards-grain : b+ E) M! `" U
set heading 04 b7 n$ \8 Z& V
let best-direction 0
/ U3 `6 |2 F& M! U6 p3 y) @ let best-amount grain-ahead
5 B! L' Y# X* k+ `6 `% D, H set heading 90+ r W- g8 Q9 x6 @# ~" u% I2 ]
if (grain-ahead > best-amount); E$ x7 `2 p2 i7 @; }1 `/ H3 o
[ set best-direction 90
; t3 m" g7 L3 l: y set best-amount grain-ahead ]" ~) W. L2 v, @7 x5 | w
set heading 180( G3 X) Q8 F: G; U% U6 c! w6 z
if (grain-ahead > best-amount)+ ?; t% [, A2 K$ ]" r+ e
[ set best-direction 180
7 g" C7 s3 n/ b: T' z set best-amount grain-ahead ]# b0 R. \, Z! K7 X7 E% C. @$ I" S
set heading 270
4 A% n K$ J/ z4 B1 j% S& ~ if (grain-ahead > best-amount)
! N' T/ z' A6 b! E% A/ k- J( w [ set best-direction 270/ S; h- u- d0 H6 d9 \) D
set best-amount grain-ahead ]/ r; @1 o, C; w6 R: @$ C
set heading best-direction5 ^7 M0 z# }7 g) l4 d ^
end
9 u+ w" b; M; O3 ?
+ I9 V( J* W) q
1 L* w" B3 z0 b1 mto-report grain-ahead & n N1 U: z# a, T' ^% f
let total 0
( y* ^2 `" D0 I. c1 Z" E let how-far 10 J4 F P1 F/ P2 G& s
repeat vision- E# I% o4 R& N: |
[ set total total + [grain-here] of patch-ahead how-far
& G: m, a$ \' l! y" m$ h: ] set how-far how-far + 1 ]8 k4 _2 G: ?- v' b" v
report total# E; @' f1 o8 c6 A; T0 f! i
end8 z" R G) i3 P, ]+ n$ h
5 u; K7 q2 O2 l# W0 i7 S/ Q* Uto grow-grain
$ M0 v- r- V: C7 ^7 U, N) C if (grain-here < max-grain-here)
+ f! J! U% U0 { B: i& Y1 { [ set grain-here grain-here + num-grain-grown
4 e+ {( e( N( R% E8 h0 ?( X! r if (grain-here > max-grain-here) 8 G' W- G6 X5 d! ?
[ set grain-here max-grain-here ]
]. k$ g' R8 k! d recolor-patch ]/ v; @4 t$ X5 \# X
end
# ]% x$ T. r7 Wto harvest
8 M2 ]( O: F6 r+ |' g ask turtles6 @3 Z7 C0 J/ ?- N1 X& O
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
( X: P- [* V' s ask turtles
/ \, z; u! A0 M( M) I' I [ set grain-here 0
' h" G5 G& f" o: z% V5 E" Y- Z recolor-patch ]0 |# H) l1 l: t2 y- A
8 I" {* @$ @2 P: rend
# g0 A/ P* R" }1 U M
' y2 r3 n; u1 `to move-eat-age-die % K2 W* V: q1 o# w
fd 1
: n: d* M/ |, x& |" I% U set wealth (wealth - metabolism)2 _( s2 A8 n I3 G5 g$ Z
set age (age + 1)
/ o. H1 j) ^/ Y& d2 A8 V% t, m if (age >= life-expectancy)! Q; T0 O9 |8 r
[ set-initial-turtle-vars-age ]4 z7 D( F t/ q) u5 H
if (wealth < 0). y2 K c3 J8 ?; p) q& P8 l
[ set-initial-turtle-vars-wealth ]
, p: P& |" r& y5 E 3 v' s3 U T4 j7 T+ O3 U" r
end
1 ]7 p+ b) c! `# q
3 j; R( t- R; n8 E. K5 d! y8 ]7 U- c% v8 G& e/ L' W8 w2 L' L$ B
to setup-plots5 _' V* b$ g' o6 a5 r
set-current-plot "Class Plot"
$ r$ ^5 Y b/ A# m! g$ ` set-plot-y-range 0 num-people$ \: @2 i( ~" j: G, y2 p
set-current-plot "Class Histogram"
U3 F! }2 a$ L set-plot-y-range 0 num-people
9 T4 x f6 d8 T2 l3 D- V% K+ Cend) s' q" k, Q2 S5 Q. z- ~" y
0 v/ ?. L" L, ^/ U5 g! |7 T- dto update-plots
1 z. P' Z8 l# D# K update-class-plot
- A8 M1 S' m: q Y1 v% Y update-class-histogram
1 U3 b2 B6 @1 w/ G, z1 z update-lorenz-and-gini-plots. { B2 G2 R `
end
# n4 W3 F; F% r. o ]5 A% Y! s' W) {$ W
to update-class-plot
8 ?% p- \; w# J; i5 y set-current-plot "Class Plot"
# T7 F" N* @& c4 `' \ set-current-plot-pen "low"
# H" R4 M% _3 l3 n7 ] plot count turtles with [color = red]4 {0 Q: |6 i, m3 s% a
set-current-plot-pen "mid", J$ l2 E- d& v8 e. K2 `4 r. R
plot count turtles with [color = yellow]" {2 T* i7 `1 Q4 H
set-current-plot-pen "up"! T' w) S7 S z; l
plot count turtles with [color = green]
% w9 Y6 w1 P. B, Oend7 ^( P/ b5 t, ^2 v2 v
9 q0 }/ U% `) J% E6 Qto update-class-histogram1 G; o5 K7 p5 T0 ~ h+ E* {% o2 g
set-current-plot "Class Histogram"% Y9 M; T [+ z0 {" i
plot-pen-reset
: C3 t$ Y7 ?$ o- h3 E set-plot-pen-color red* y" Z& q2 i3 ?; \
plot count turtles with [color = red]2 A) b; A5 F% O' ^. O* j
set-plot-pen-color yellow/ Z) I$ C7 x0 u( s# B% q
plot count turtles with [color = yellow]
8 J3 }+ } m% B! H. D9 }3 T set-plot-pen-color green5 @$ f# }; G9 i: h
plot count turtles with [color = green]/ A1 G6 J4 p, o/ I% E
end0 J, n/ A s( Q
to update-lorenz-and-gini-plots
+ W, v& q1 c4 a- `& ], m8 B set-current-plot "Lorenz Curve"
/ ?# J' }& k. O, G; q clear-plot
U) ?; z, v- F# q( @. @/ r
$ k/ E% y8 P7 W0 K w2 d& @5 V1 x set-current-plot-pen "equal"' X4 ?$ r$ |6 n; u; k; A a
plot 0
; K5 [6 T! s E" s plot 100% G h7 I( p% ^& H* d5 P" G
# h- j2 A' ?5 `3 B set-current-plot-pen "lorenz"
( Y! _* q! w2 A Y4 E2 { set-plot-pen-interval 100 / num-people" D! u, w2 z; f5 K; r( h7 c
plot 03 Y: x* m( R' ^ V4 |
, K* y( @' ~' P% X& [
let sorted-wealths sort [wealth] of turtles- \& o. x3 I0 D: N& @
let total-wealth sum sorted-wealths) T5 ]" o. } v7 |2 o
let wealth-sum-so-far 0# i' T* \. a* y9 |( X# o9 M! i
let index 06 l/ e8 T) t& p3 F
let gini-index-reserve 0 Y6 r2 T( D9 x+ [7 X9 n
4 t8 o! _& I0 R* C4 W
repeat num-people [
5 z# X. ]- c7 q- p% I k2 c% n set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
+ T: w8 B6 ^0 j# A plot (wealth-sum-so-far / total-wealth) * 100
( k2 u$ A5 D+ g" Q set index (index + 1): e! \0 }% O1 M! `
set gini-index-reserve
: A' y% x& I- M5 A6 O: d0 [+ Q gini-index-reserve +
4 j& a. t! z+ }: p! r" c (index / num-people) -2 s, \& o$ _, N/ |1 T; K" A: |; e
(wealth-sum-so-far / total-wealth)9 z& n+ p* l/ F3 d& W: ^) h
]
J2 T$ j! ?, e- g5 ?# ~, `
9 y: z2 C4 U% F2 G/ |3 z set-current-plot "Gini-Index v. Time"
. W7 L6 L2 f9 [" q" E7 e v plot (gini-index-reserve / num-people) / area-of-equality-triangle
; G6 i- G/ p, G6 Jend
+ ?, Q v( f! }# i6 O2 h( Rto-report area-of-equality-triangle
& N, P: w2 _5 V, p report (num-people * (num-people - 1) / 2) / (num-people ^ 2)$ e; n3 }2 {, x4 x) p
end |