请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
! @% L$ f% J9 j$ }" m& [2 w5 lglobals
/ `$ B) t: M5 r/ Y[
+ v. C3 K! T+ ?* ]: E1 q; g max-grain
. l- `! ^& Y4 Y
5 k) E/ C$ e/ a0 @9 w4 L; b]0 y3 \4 m" H: v" ^+ X
* J5 I! L: ^8 G' t r- [
patches-own8 U ?* }* G9 `2 ^( f% w, ?
[
& l5 n5 z& M' L. m grain-here
! D" [, M! k: n# j3 N7 Z max-grain-here ) v" N( t, M+ M* r2 F; _& p9 s! g; N
]5 V" W! X+ {9 C$ T( C+ ^
5 f8 V+ n) |, d' o# C* Uturtles-own
7 m" N, ~+ r6 v* B9 l* e[
% [+ {* s z: D+ b3 J% u age ( v& R4 B5 M- r
wealth , B$ O- ~+ F) R' N k0 E+ F2 K
life-expectancy
8 }8 K( h5 U2 i& s metabolism
) l' N. v6 U+ R4 `, J& k vision
6 }6 w( K/ V3 F& l5 e inherited
1 F# L3 C; G. }]8 i( d0 w4 ?5 z t7 b
, E& |( Q/ E1 x# {
4 f/ b' S6 h2 u, V* Z! Z) H
to setup
7 p" t8 D( L8 k! ?4 K/ R ca* F0 I+ I* T7 y7 S2 h
set max-grain 50! i& j" c# i) c' }
setup-patches* I4 _( C2 y, v {5 n
setup-turtles
3 u5 g6 t; m) W3 v4 b ~/ `. l setup-plots. H, a1 R! a: Q! P( s8 D! q/ T
update-plots
y3 S5 f3 {& Y( ]- Dend0 P/ J: O. A: `* v. e! n4 C
to setup-patches
_, i' m& x2 K( h4 v6 g: b ask patches
& Y7 F4 W7 k+ I5 S* M- v [ set max-grain-here 0% i% T: u: ]$ B6 f6 a- u
if (random-float 100.0) <= percent-best-land! C7 U7 b3 \: ^" q2 U$ o* n
[ set max-grain-here max-grain+ v- R7 C! {+ W; `1 H. U
set grain-here max-grain-here ] ]0 U1 u( ~; e" p; }2 u- |9 }
repeat 5
" p2 u: Y# i! n. F2 } [ ask patches with [max-grain-here != 0]* G% `$ ~ j7 m! e& D
[ set grain-here max-grain-here ]
& n2 i+ i$ v/ ^ diffuse grain-here 0.5 ]( K$ M8 L/ i; ?" i$ P/ f" h/ W$ N. ^
repeat 10
7 L7 `0 F2 B& H) A [ diffuse grain-here 0.5]
/ S; |4 s! G* X' I ask patches
/ }; w" j. ?0 }7 Z) @3 t5 G [ set grain-here floor grain-here
% f- z& j# X3 U& J( A set max-grain-here grain-here
& {1 i* Q5 B+ x3 C8 v5 v recolor-patch ]/ }+ M7 r% R5 z% J7 K- f
end ^$ i2 _/ }. y
to recolor-patch
6 ^# x0 i6 z, ~0 P; f set pcolor scale-color sky grain-here 0 max-grain3 y$ `$ f5 x$ ?2 d5 ~4 l
end& q5 D. `( U, D# S2 X
to setup-turtles
5 r2 d: P: D$ Q6 N set-default-shape turtles "person"
* l6 X+ g/ R1 W; H: J$ a' t( ^ crt num-people: B7 {& [% H6 B* _
[ move-to one-of patches 7 L6 K e% _3 F
set size 1.5
9 ^9 D, x! C( K set-initial-turtle-vars-age
8 h; }! V7 y+ q set-initial-turtle-vars-wealth
( V5 ]( l2 `+ K2 A5 n9 k& ]: E set age random life-expectancy ]
' [; l3 k1 w/ u+ J% M9 A recolor-turtles% N$ x, V6 G! ]. N m! M
end# ~8 b) O0 h+ u+ x; C/ A
/ i% ?9 c% L+ y$ K; Y/ s7 ~/ V2 U0 Ato set-initial-turtle-vars-age
( J8 H" g6 F. d9 R let max-wealth max [wealth] of turtles- U( }1 U2 h) G, v0 F8 {! _! N' Z
( o% A- y( H/ b; S U ifelse (wealth <= max-wealth / 3)4 h; Y* F% a" ?3 h5 Y
[ set color red
7 [+ @2 J! |# ]- n1 v" ^ set age 0& L5 z2 r! f* C3 X/ T, }- E
face one-of neighbors4
! d+ L: G; w5 O, p, }% n set life-expectancy life-expectancy-min +' n# B! I8 J ]2 {' j" Y& K1 l- e
random life-expectancy-max
" i. J% y. U/ H( x5 Q set metabolism random 1 + metabolism-low
+ q$ U% J! H, }; y. N: k2 f; A set wealth metabolism + random 309 T+ I) T6 P0 a9 n6 R" A& D8 ]( {7 p
set vision 1 + random max-vision
9 L2 G0 d+ s6 f$ o set wealth wealth + Wealth-inherited-low ]
' l. U& K! |1 t$ C1 b [ ifelse (wealth <= (max-wealth * 2 / 3))
6 o6 R# V' d* C5 G [ set color yellow 5 T- Q' o: W4 F8 I( h' k. {7 g7 Y s
set age 02 \5 ] z0 l: G, {0 c* i( Z
face one-of neighbors4
+ r# }- ~$ w2 r3 { set life-expectancy life-expectancy-min +
7 m7 b5 T4 N8 H( R& ^ random life-expectancy-max + 1+ X$ u: ~0 U1 a% X. w, T
set metabolism 1 + random metabolism-mid, _- y% Y8 n( l7 O' U, y
set wealth metabolism + random 30
2 \5 t/ K8 ~$ Q set vision 3 + random max-vision- X2 _6 D4 e; z% v" H( L
set wealth wealth + Wealth-inherited-mid]9 \2 D1 r- D+ x0 k6 K
[ set color green ) I, g! f8 ]8 i7 W: H
set age 0
+ |( S7 \5 w) k3 F* W# n+ F0 E4 G. m% F face one-of neighbors4 1 k7 e' a! f- v
set life-expectancy life-expectancy-min ++ Z2 [6 S: }. m+ G
random life-expectancy-max + 2: t; _6 c1 G3 k/ @& X; |
set metabolism 2 + random metabolism-up
2 B5 Z, O3 B# B% ^. }1 _ set wealth metabolism + random 30" t4 m T- Y! r3 T& D
set vision 3 + random max-vision/ o/ F: b) m% e
set wealth wealth + Wealth-inherited-up ] ] 3 A6 B6 l5 q& y. O
3 D; V H+ ^' A, r$ t& w9 z
end
7 t9 _4 q: \8 X# o2 C2 S _to set-initial-turtle-vars-wealth
( c) M" B6 J6 V let max-wealth max [wealth] of turtles) U' ?- e6 a2 }# X" Z; d# B
set age 0
/ a- r# q; \2 J5 }7 M5 h, r1 Z face one-of neighbors4
0 V1 l2 j! ]* h1 Z3 T* [* B& h0 E set life-expectancy life-expectancy-min +5 b5 C* s% W/ A, I8 G* v/ H
random life-expectancy-max
, k$ [( E ~8 c5 `! c8 [ set metabolism 1 + random metabolism-up
' d, x2 G% D7 A; q, C set wealth metabolism + random 30
+ D3 y6 e; M9 Q- S" ]/ T$ \ set vision 1 + random max-vision ! c# v. n" A' l* x( [
end4 ^% }7 ^5 E" y& q; D% ]
to redistribution, o" c3 s1 |% f- k
let max-wealth max [wealth] of turtles
4 D3 h* Z* l8 a T4 Ilet min-wealth min [wealth] of turtles
/ G+ j4 Z5 t! T* c6 D4 [+ I5 nif (wealth <= max-wealth / 3)) L) H% V4 s1 `
[set wealth wealth + Low-income-protection ]8 `( ~1 n/ I. ~" O/ k; A! T0 g% ^9 u
end
" Y# M" E7 j: Z$ ]) h - z* e3 [) W; ]0 K
to recolor-turtles
0 q; H B8 P0 ~- j let max-wealth max [wealth] of turtles9 ?( _2 B9 \$ D- o! W' Q
ask turtles+ m! l" ^9 _' [
[ ifelse (wealth <= max-wealth / 3). o1 F" n) Z @$ g9 o# [6 \* [5 a
[ set color red ]: F8 ~: j( I) w V6 Z- W8 _9 |
[ ifelse (wealth <= (max-wealth * 2 / 3))
5 W+ J% l B C: Y6 B7 t5 C [ set color yellow ]
# p7 X" h8 |; Q [ set color green ] ] ]% e7 [3 l0 J3 X' I
ask turtles [ifelse show-wealth?, d( }0 s3 Y% x1 j! ~5 J/ i0 P
[ set label wealth ]
) h$ D2 V- F9 q, I1 D4 r- j [ set label "" ]]$ U, j) [, \, k* [2 \8 b2 p
end2 R& v+ q/ \; K$ N# a$ ~/ i1 B3 B
; _9 E9 M+ l- s. u) N+ `% Y3 Kto go
' v, g9 c2 d' l ask turtles. m9 Z' F2 ^( ]7 ~% k) }. x
[ turn-towards-grain ] 0 V O# \" l( y3 p
harvest* [) a4 ?1 j2 r4 y
ask turtles
! M6 \$ c: q. C [ move-eat-age-die ]
1 \' z0 W! C4 h- U, n- l! E1 v recolor-turtles
2 U: b, w8 v+ q- D$ Q* X! | if ticks mod grain-growth-interval = 0
8 t3 ~; `5 g1 F5 s% A; U; `/ x [ ask patches [ grow-grain ] ]! [! f7 l5 s7 R
& I2 O1 h0 B E5 S$ ^* k
if ticks mod 11 = 0
1 P& h& i% o8 A2 m. U$ p& P [ask turtles& E# q/ C6 t7 |$ B( H) a
[ redistribution ]]
& J8 J/ W) O! p. }4 V) } if ticks mod 5 = 0
3 Q7 D+ z4 y7 w6 r [ask turtles; q5 _) z' B6 ]5 `# Q# R+ i
[ visions ]]
0 v: a0 Y5 \% [3 c1 R4 [7 W3 ^ tick# k d, h/ k `% O% J9 b
update-plots
5 M/ G+ i) V! d$ vend0 ^7 k% N: w4 a1 m7 r$ u9 |' n2 B9 r& l
to visions. j/ I+ v# Q/ V* B) I
set vision vision + 1
0 Y3 H; p; v" N7 k: gend7 t* ^6 u. C9 S0 K. l, @4 K
1 L- r t/ f x; Q j# D/ ]# k7 j" s
4 x) J! {2 V8 ?7 O1 C5 ~' tto turn-towards-grain ! \4 Y" |, b2 p2 u+ i8 ^6 K
set heading 06 l. j9 o8 T7 _$ F4 P
let best-direction 0
" S- |2 l5 G# s+ ~; _, z let best-amount grain-ahead; S; z$ v& x& P* i' E
set heading 90
/ m; r2 l) m# | if (grain-ahead > best-amount)/ L+ p- ^1 w5 N
[ set best-direction 90) K! X9 _5 Q O! b4 E. |$ b
set best-amount grain-ahead ]
1 H' B6 P$ e0 Y; A! I set heading 180
1 @: x h$ R4 D# h+ A9 B7 X n) W. O if (grain-ahead > best-amount)# c9 T# Z1 _% r y. ^9 }4 u
[ set best-direction 1806 j* y2 s$ Z% _/ H o6 q
set best-amount grain-ahead ]
) c/ V5 j/ w e7 f4 k( P% T- M$ I set heading 270
! \7 K) Z$ R6 O: }1 D if (grain-ahead > best-amount). Q- y$ |( P" j3 D- G" }
[ set best-direction 270! _! X2 @0 t( F, E/ c2 [( _5 a
set best-amount grain-ahead ]
% ~$ [+ q+ \5 O& K set heading best-direction) T8 F: U0 J! u- C7 q
end
3 {% y# e' S! ?5 L- y1 H# n3 [
9 D( t" j6 y+ j/ [0 s/ ?
8 b5 K" @/ I/ X) ^to-report grain-ahead ; q Z! U- l& e i$ Z# U
let total 0
, ]2 L+ H8 d8 q5 E" ^+ R let how-far 1
. j! |) j( ~' y" Q) `0 u+ K& S+ w repeat vision( @% U0 e4 x8 h
[ set total total + [grain-here] of patch-ahead how-far; @, f! g' ]& X
set how-far how-far + 1 ]4 x- g& C9 g5 S
report total
8 M! D4 [# }- W" k+ ~6 U! Uend/ K8 ^6 Q- G$ E* p: c+ @; y) s" k
u% G/ h' C- w! l% f/ j
to grow-grain
) Z V) T0 G/ L8 V/ Y if (grain-here < max-grain-here)1 W& A$ `! b8 j7 I
[ set grain-here grain-here + num-grain-grown
5 X7 J+ w1 l0 O* ~ if (grain-here > max-grain-here) 8 |; E( Q: V, \) Z
[ set grain-here max-grain-here ]
6 i# x( ~/ [/ ^ L, L7 t" | recolor-patch ]8 Z; m/ Y( h$ ?6 W( U( N
end
3 X. U: j. k2 b( u. L# qto harvest7 ]: A+ B+ l! h. J, a# y6 E
ask turtles
- z; r* u: f1 L+ _. E [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]% B% J" c# V4 D" ]. E" U$ s
ask turtles# ?. ?$ C$ i# N6 ]+ b+ q
[ set grain-here 0
+ k& N% M* H) b$ m! s0 \$ e! A0 d- W' r recolor-patch ]
! l8 A' d; ]6 S' k8 H9 |
* r( v: v' Y6 u- [- M# A+ Zend
" @' g0 R# z: Y+ e: o
L5 ?8 b* O' dto move-eat-age-die ; N; I8 E8 Y6 {3 f0 L( Q
fd 19 {+ {( `' m/ K8 B' n
set wealth (wealth - metabolism)
7 p# y, ]3 {6 I$ [7 v" b set age (age + 1); B# H2 P0 h# x0 d
if (age >= life-expectancy)
. l3 R- I# N3 F5 l# K [ set-initial-turtle-vars-age ]; S) X) K" ~" \$ O9 o H1 u) G9 F
if (wealth < 0)
/ \( ~1 r, V0 | T3 e$ P1 V% \$ k [ set-initial-turtle-vars-wealth ]) u8 W0 Z1 W, c8 \
$ X9 w; i# ` ?, P3 o9 V
end
4 w; J! i$ \$ l! }4 ~9 A
. r' j ~% j! i2 A: E* y- a' N9 u0 s9 ?' H1 F5 i/ c
to setup-plots
$ u$ |6 ~7 L" j0 P3 `) }9 ]; ` set-current-plot "Class Plot"
- |& N6 _# ?0 [& d, c" X9 n6 I8 f set-plot-y-range 0 num-people
5 \5 J5 D) a5 h3 P4 V. E7 E! U# R set-current-plot "Class Histogram"$ t; w& j0 L: ? H
set-plot-y-range 0 num-people
: J2 H* h0 Z+ n1 G# o U# @* uend' N! G6 @5 `" N, u
8 v+ M+ P+ B4 |' q' |to update-plots! N9 x* I4 H1 `% t7 |, b
update-class-plot3 K4 E1 E; n. Q9 F) S# }
update-class-histogram" ]/ b9 B% z) @0 X5 @2 S" c
update-lorenz-and-gini-plots& z+ W& p- r y' q1 }+ l; H
end
+ a! L0 L- a+ P# u( l& W/ f7 g; J+ g. v8 v. k& c8 e: s
to update-class-plot
# c8 v2 K1 Y& d/ m+ t set-current-plot "Class Plot"/ k# R" h3 n6 ~# b
set-current-plot-pen "low"7 d+ @1 M, E2 n
plot count turtles with [color = red]
- U2 p4 I+ V8 `4 W" D0 Z set-current-plot-pen "mid"! _+ Y2 `8 s, n
plot count turtles with [color = yellow]
8 c! a. s. C ~6 B1 c( ?0 B# n- y2 w! M set-current-plot-pen "up"! C3 P3 {8 @% V' }* n) Y
plot count turtles with [color = green]5 b: Q+ y3 ^8 y9 i1 g; L
end
6 ]! N/ c/ D# i& A* p3 b$ {& G% w
]! B) P( N+ Q# ~ t9 X( z6 F: T8 [to update-class-histogram
+ W3 c3 x8 b0 J7 X: N- V6 m$ C set-current-plot "Class Histogram"
0 K. l$ \# u/ H/ y plot-pen-reset
- E" H1 _! {4 N9 x set-plot-pen-color red" Q9 V5 O. s6 X- i1 q
plot count turtles with [color = red]$ Y5 _. i% S1 R; A8 b- I
set-plot-pen-color yellow
& ]* H, T. ~6 z# B, [ plot count turtles with [color = yellow]2 L5 L9 i/ y" C) D- n4 T ^
set-plot-pen-color green- X. z, N2 R/ D% q% l
plot count turtles with [color = green]
a" t4 M5 j% J/ Eend; ~! ^& t1 _! j7 P% C. y( Y% y
to update-lorenz-and-gini-plots
3 h" Z' P# ?! E# j& Y, e set-current-plot "Lorenz Curve"
) e( h1 N% U8 q$ h1 I7 K' n clear-plot
+ g, J. e4 H5 l& k3 [% O( r" T( R) n# G
set-current-plot-pen "equal" w3 x8 c( @4 E q0 Y3 S- c, d
plot 0
) q9 E% L3 i% W9 } plot 100$ K3 ?( {3 I+ D. C
8 ~5 E% R3 a; W% `" M1 q
set-current-plot-pen "lorenz"
A$ i6 L5 P/ u0 m set-plot-pen-interval 100 / num-people: T) [6 v5 F5 d9 v- v
plot 0
; `" a2 S8 h Z$ H# m
3 L, c% ]; }( G. ^& x3 s p, R let sorted-wealths sort [wealth] of turtles
: D* C7 B8 w. T3 ]' m+ ~/ i( R let total-wealth sum sorted-wealths
$ @' N3 }8 u* v: F3 | k, \ let wealth-sum-so-far 0
, I8 p' |( W0 R: u let index 0
- s/ i: u+ ?9 {1 ?& D let gini-index-reserve 08 H. C1 I( i" i8 q* f* \
e+ V0 F1 Q" V% u# m# V4 {
repeat num-people [) j7 d7 u1 k: \! J- ^
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)! A6 y$ t3 }, u4 b0 }( N# a
plot (wealth-sum-so-far / total-wealth) * 100
- V8 @/ |+ ^" j# _1 C set index (index + 1)
" c, E1 G; ]! L( {' G4 B6 b: V1 w+ t/ ] set gini-index-reserve3 f7 d2 p. z# `0 i1 K. ^
gini-index-reserve +6 j& o/ b) Y; ~4 H+ C6 r6 E+ E
(index / num-people) -! s. |+ J! J/ F# q" q$ K3 h! @
(wealth-sum-so-far / total-wealth)
! M% J" T( L7 ]2 t ]! X" h& m0 P8 i# d
* e; l( \9 g/ f1 M! S
set-current-plot "Gini-Index v. Time"- z& S/ Z7 @2 b9 [4 {8 `
plot (gini-index-reserve / num-people) / area-of-equality-triangle
! |5 p9 t6 h4 V0 A: S6 zend
$ T! F J1 o0 ]) Ato-report area-of-equality-triangle
+ g" ~5 ~# n" h; H* }. x6 D2 m report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
a: M! T: u3 |: D/ pend |