设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 5527|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
% E6 L$ j4 Z) n3 b7 _! f$ Cglobals
8 C2 |' W) p2 ?3 m+ u" X[0 n' c6 Y% O3 L8 d
  max-grain   
; m. d$ B9 w- T9 @- B0 g; g1 e$ T8 Q5 h: h5 j7 V* I
]. Z1 k  }# u6 b7 ^0 Z) G
9 O2 I1 \% `8 Q6 E) [  R% J
patches-own1 k) i2 n& v) j4 k) b7 A
[! A9 x0 Y1 O. P7 ^3 [& p" W. W3 X
  grain-here      + ~% C' U& t2 {5 j! [8 F" L9 K
  max-grain-here  
7 O7 s; l. n' [$ K3 ]]
5 t8 R# {$ o+ q, E7 h# h
5 W) t: N8 t) N/ bturtles-own3 b- V$ p6 n* `
[
" M- I0 @! G- q! n  p/ D/ ^  u. ]  age              
* T* e6 q+ p2 a/ K  wealth         
9 R) t% Z, B1 W1 g& k  life-expectancy  
! Y, M/ u/ t, U. h: m  metabolism      
3 E! E4 |# _9 V7 k8 Z  vision
- v2 f! o: Q; ], }2 O7 ]/ M9 z0 R5 T  inherited         6 ~, s: d0 r4 R
]1 o+ b! z8 ^4 c- D: [9 c7 l0 \
1 g7 X+ D6 A; I% t: m
( l; R; j! ]" e- u* j2 p( t
to setup
; I2 n1 j0 {+ p  ca
) T% R5 e- A) o  ^2 U; b) x  set max-grain 50: Y9 \/ v2 P. e: Z2 j
  setup-patches  A8 l+ d6 o2 `0 C0 b+ h# |
  setup-turtles
0 l7 C2 n7 q5 x5 H# |' b& u  setup-plots
' s, }& E% J; ^8 {+ y5 C  update-plots
8 _$ {+ d7 U' [& x# K9 send9 P: |6 h3 i! F( n7 I4 `
to setup-patches' J- j/ K4 Z! M9 p: w# k; M' }
  ask patches
; b3 l+ r' W* K7 d" A" n8 X. S    [ set max-grain-here 0, Z1 m- o/ e; f% a  R# u0 Q
      if (random-float 100.0) <= percent-best-land# o( u  Y8 s9 B+ v' n5 c& W4 K
        [ set max-grain-here max-grain
5 G' ^. I; v. E- e! F3 p* U          set grain-here max-grain-here ] ]
% r3 Z9 K9 N4 g4 d/ e! i! ?  repeat 5" Q3 q- F2 n+ {3 P9 n/ ?  E2 z
    [ ask patches with [max-grain-here != 0]! K$ G% q1 I0 d% v1 ^, Q
        [ set grain-here max-grain-here ]
9 j5 u8 {5 y' c# S4 p9 Z) p      diffuse grain-here 0.5 ]
/ `4 f  ~( L6 Q% ^9 x1 i" @, _9 R: g  repeat 106 N3 l( k9 w& a4 N
    [ diffuse grain-here 0.5]         
% c" i! U2 z9 g( F* I# p  ask patches
/ h0 k  A. A* o9 a7 Y$ j, [% a* e    [ set grain-here floor grain-here   
6 G2 W# [" D8 {6 L1 u! K      set max-grain-here grain-here      ) R' l) ]# @) M$ n7 R# Q
      recolor-patch ]  U1 T# Y2 q* w& \
end
- _8 I0 ^; r% f; B: I% a( C& `4 \to recolor-patch  
& R! m4 j4 I! y1 Q  set pcolor scale-color sky grain-here 0 max-grain
- J. O, L( G. ^# U! l( Iend
  F  Y. J$ z: Z1 i  [3 {to setup-turtles: c! K2 J, I6 O! E/ C. V
  set-default-shape turtles "person"
0 R9 [5 G* z" C* j/ w  crt num-people2 M* y* i1 A4 a* L1 C  l
    [ move-to one-of patches  # |' ~4 \. b9 c" D! W* R, @
      set size 1.5  ' s- ]7 n- V: d7 \
      set-initial-turtle-vars-age' w+ Q5 K0 [4 h7 J2 }9 B5 C0 d
      set-initial-turtle-vars-wealth9 E2 P# H& Z% j4 F" g
      set age random life-expectancy ]5 l: B$ ]" W. z
  recolor-turtles8 r, v1 A" z3 I8 d- P9 n
end( n; B; U: ]  B; j* k: a/ Z" E! j

9 A3 {4 e! o' V) xto set-initial-turtle-vars-age
' _; K% U9 N" ~ let max-wealth max [wealth] of turtles. `* ?, u0 M0 p" {0 H. P
   
: h) M4 h+ a6 d: }9 O     ifelse (wealth <= max-wealth / 3)# I6 L) y& b4 ?9 W" D
        [ set color red 0 G* s& K2 Y5 W' j) B4 W
          set age 0
1 e% M7 @" Q$ E          face one-of neighbors4 * I* a# ?/ v3 Z% W" I( X7 ]3 T0 a
          set life-expectancy life-expectancy-min +
: l" s( v8 o( P# S9 Q/ N                        random life-expectancy-max
8 x9 m( c$ b  V1 Z7 R, d2 }* h0 L( F          set metabolism random 1 + metabolism-low3 F" h" l( ^/ G3 C# C
          set wealth metabolism + random 30( ~6 o) y/ `6 Q0 R1 K* U
          set vision 1 + random max-vision
9 x. B9 ~; X6 n+ g/ T7 b2 E             set wealth  wealth +  Wealth-inherited-low ]
1 v+ n6 Q* @4 _1 A9 B! B- T4 w        [ ifelse (wealth <= (max-wealth * 2 / 3))
+ O6 ~1 Y/ i; v, |- C1 p            [ set color yellow 1 l- y! G4 r  @. D$ Y; r$ y
              set age 0# I7 f$ k7 c% U4 O& P+ X3 M
              face one-of neighbors4
" T" Y" _7 H$ E              set life-expectancy life-expectancy-min +! d1 h2 u' f9 W+ ?( D; |+ q
                        random life-expectancy-max + 1- g6 Z5 n1 x6 j/ J9 I& S/ f5 d4 X
              set metabolism  1 + random metabolism-mid! P! i/ V* F, ?  J8 y
              set wealth metabolism + random 306 I, w. T5 D( N  t6 M! h
              set vision 3 + random max-vision
; c9 u5 R) s1 A# `# H7 k) e. J                set wealth  wealth + Wealth-inherited-mid]& G. j* M2 y4 g
            [ set color green ' U. s( l! i* v/ _2 c4 p- x
              set age 0: I; Z+ M4 c8 N# `5 U" z5 q
              face one-of neighbors4 ! E" r$ P% y/ f3 U3 F5 G
              set life-expectancy life-expectancy-min +
+ ~. x8 j# o9 ^- B. c9 f5 k                        random life-expectancy-max  + 20 a( k$ c7 t0 S2 S$ l
              set metabolism 2 + random metabolism-up' S  `6 J5 i" G3 _' C& e0 X
              set wealth metabolism + random 30- o! D! i: g2 e1 Q6 m$ M
              set vision 3 + random max-vision. k! r& ^7 u3 y9 \
              set wealth  wealth + Wealth-inherited-up ] ]
/ o9 O- u5 ?1 d
/ f2 a7 l& ?0 Z! _& _2 V7 b6 x1 xend) w$ e" Z) [1 n
to set-initial-turtle-vars-wealth
' N& x& ?! f0 {0 m) E; } let max-wealth max [wealth] of turtles6 a+ C+ z1 g: l! G; ?6 a
          set age 0
8 o' X- @" P! Q+ f' }6 u; `          face one-of neighbors4 9 g( |7 R1 {9 S- ~
          set life-expectancy life-expectancy-min +8 z4 n0 ?3 d1 q; ~: L
                        random life-expectancy-max : J  q' P4 {2 m: ^/ x
          set metabolism 1 + random metabolism-up& X) n& x$ p7 c( z1 v
          set wealth metabolism + random 30
* P8 {% O2 i) O  o  w" U          set vision 1 + random max-vision
) ]  p8 G7 E0 H' h. yend
- C% ]% `+ Y7 v/ d4 Nto redistribution' g$ Z) @( ^) \* x0 \
let max-wealth max [wealth] of turtles! \; R3 T5 \* I# R$ a4 l6 n0 [
let min-wealth min [wealth] of turtles
/ [# ?& [. T! l$ Z$ N( Tif (wealth <= max-wealth / 3)
4 I* A9 O/ X: g8 H, U- y [set wealth  wealth + Low-income-protection ]$ X% g+ F& \( o6 e
end
4 d% Q8 C8 e/ y" M0 s         
" m7 k( T+ y: j% o* y" q6 Z; vto recolor-turtles6 h; |% b( c6 l2 N4 a, G$ Y
  let max-wealth max [wealth] of turtles
3 U, x8 N3 ]9 y: s! |/ h6 K  ask turtles9 \+ J$ z  ~! ^5 a
   [ ifelse (wealth <= max-wealth / 3)
/ f2 S' R& e* \% {3 j+ P& C        [ set color red ]- \! n2 [3 S, ~+ G9 p: V
        [ ifelse (wealth <= (max-wealth * 2 / 3))
, j5 e7 H. ]$ O* r* ]! Z            [ set color yellow ]) f) _9 J! Y* ]
            [ set color green ] ] ]
$ R6 k4 M: a2 C8 N: r% ? ask turtles [ifelse show-wealth?
; Y/ ~' M: B$ ~& g8 y+ [: I    [ set label wealth ]
0 V+ a4 |, ]' I' D% N    [ set label "" ]]% `& [) @3 f+ r0 W$ b+ W3 H
end
/ z7 [+ P: y, t9 m$ |: u3 ^
" Q& K; T" Q- A, Wto go
* y$ {4 A) I( I0 @; J  ask turtles
0 _+ W2 n) V# @) ~# p0 W1 [9 A    [ turn-towards-grain ]  
/ ]3 ~( \; u; U- O  harvest
7 c0 @+ D; t7 T: \) m& ^/ `  ask turtles
0 g5 n2 e# Z+ d+ V- Y4 @8 }    [ move-eat-age-die ]
9 A0 I& \! N. ^  recolor-turtles
- I: e% S+ I3 @7 Z9 w# K, t  if ticks mod grain-growth-interval = 0& x1 n: a- J* R( Q" P
    [ ask patches [ grow-grain ] ]
( C8 B( R* t$ k/ Y6 t$ e   
' u/ r6 C5 o! E. G4 k. x  if ticks mod 11 = 0
0 M* y5 c. S) D, d  [ask turtles$ B6 ^$ y$ r: I
  [ redistribution ]]5 X# M2 I& c4 U+ x; V0 v9 u" H
  if ticks mod 5 = 0& M% s2 _1 v& U1 U5 L  p
   [ask turtles, @1 l9 d9 ?' D2 E
  [ visions ]]
  }; w9 n$ F% c# J6 r  y. l  tick
1 q0 ]' C( Z+ b3 Q: [+ x  update-plots
/ ~" V: D( F/ Q6 w' K2 xend' Q9 w. t: D' U4 ?4 I
to visions3 V* S/ i- A+ c( X( `- O6 g; ~
set vision vision + 1 1 O1 ^, G0 f" u" s, v
end& A# W4 T! o2 M3 E; K
* ]+ s, E) d4 j, o  [  z5 r6 R3 B
" x! Q; ~: J; G$ z

; Q8 D1 [4 q7 x7 ]8 `4 a. Eto turn-towards-grain  
# Q. @: {* U2 `6 W  set heading 0
0 ?3 g2 D& Z  ?" S  let best-direction 06 [8 w4 y0 A: x5 c! n* e
  let best-amount grain-ahead1 r4 j( s8 e+ T6 S; Y3 \
  set heading 90
/ |. M8 v3 u. X+ {( e- T  if (grain-ahead > best-amount)+ s/ X2 D: T: k+ {3 l9 i& X1 o
    [ set best-direction 90
) d% M  x( v) O1 A' L      set best-amount grain-ahead ]8 L7 W! a+ P3 R0 A
  set heading 180" C( W( [9 X1 C* R- p8 y) ?  U
  if (grain-ahead > best-amount)
' E) H; @% W$ m  E; U) N    [ set best-direction 180  @5 i$ s/ T+ o' n! Q* x2 b
      set best-amount grain-ahead ]+ Y" q& B6 ^. f) c) E4 o
  set heading 270
! k. Q" z. H# M) K' _5 u  if (grain-ahead > best-amount)
7 p/ N6 V, O, l: U+ t    [ set best-direction 270; m( z, \: t' s) C9 c
      set best-amount grain-ahead ], r& T% S# A1 d; e) E6 X* [" k9 c7 \
  set heading best-direction7 M1 i4 N# u8 K
end7 s4 `1 Y0 ]' v- Z) K" @3 }" V

, k9 ^. u1 t! E7 ^4 }
' f% V0 S# Z! y; x) gto-report grain-ahead  
! Z# |9 |6 ~+ p3 Q) i  let total 0% u9 j- U" r4 k% @# ^" N
  let how-far 1
1 _/ H2 J4 S& ^5 A  repeat vision
9 ]& o3 k6 D/ ]8 f4 G6 k  O    [ set total total + [grain-here] of patch-ahead how-far- h" y* o* C7 E% K2 |  [" b# w
      set how-far how-far + 1 ]
4 t; `/ [! ^5 |0 S& D  report total
. s7 _% ?6 k. vend- n$ a( X# p( l
! ~  R# ~5 z5 M* I# p
to grow-grain * P# \( w5 t6 d: v; J- K6 x5 L
  if (grain-here < max-grain-here)
* t( x0 r6 k% h# ~- s    [ set grain-here grain-here + num-grain-grown9 ]7 s8 @; H6 T+ {3 N5 Y2 j
      if (grain-here > max-grain-here)
* e% R( X& M; ]% _        [ set grain-here max-grain-here ]% V2 I2 `( \$ v/ g
      recolor-patch ]- W# l+ K% S) |. i6 y
end/ \0 a  y( w. {  e1 o) }& w
to harvest
% o" c) X6 K! V/ n) n  ask turtles
+ }2 |8 K0 \; a) o& A    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]+ Y# B' V+ c8 Y! n5 G) L; Y5 T
  ask turtles' Q) j+ O# N1 z; g) m5 P- \
    [ set grain-here 0
& f! p8 f! e( b- I      recolor-patch ]) A) V1 _: E- O, v" x6 T; f6 Z
  
8 B) h6 i4 ~7 Qend
8 X5 r% c/ J# A( N! ^' u. W3 p7 \; c' N% @7 q# [6 F0 D* v' ]. [
to move-eat-age-die  
1 P8 a* H# G) g" O  fd 1
, w) J+ ^- O, O+ g  set wealth (wealth - metabolism)
9 P& G; C( Y) R( O0 B! k- Z    set age (age + 1)
6 |" w$ I. @- m  if (age >= life-expectancy)
" U4 f3 n4 T; S" f5 Y6 ?  O    [ set-initial-turtle-vars-age ]$ I* |( |, H' z4 v0 S3 M
  if (wealth < 0)
! b% V8 K5 x$ h6 ^9 M    [ set-initial-turtle-vars-wealth ]
1 f4 s8 n7 d, F$ \3 w' }, X   
- ^/ Z: g( ]; g7 T* iend
5 H; U+ h  h' a8 ~+ `3 m7 A0 F- O' V9 K7 ?2 U- Z+ \/ o' p; {5 V# E' v
* V* A- U# p, I5 @  \4 I
to setup-plots
$ x+ C* k  o9 a! H% {1 D0 F  set-current-plot "Class Plot"
8 ?6 n- D7 Q% O1 D- B  P  set-plot-y-range 0 num-people
* @) a- F$ l8 M& m, B  set-current-plot "Class Histogram"7 e. k" U" v& V0 y# }% M4 q2 h  r
  set-plot-y-range 0 num-people
; }6 y5 m9 x) p. Qend6 n7 ^) k6 ?1 }/ b" A+ ?! g
9 m# V/ a+ e8 E% U
to update-plots
8 c: R( i5 ?* i1 C6 P  update-class-plot
6 z5 {# Y- F6 }4 R& v' T/ i  update-class-histogram
6 B7 _3 F& h3 Z; `2 X. I  update-lorenz-and-gini-plots
! m% ?/ H$ [  t) g; {& ?end3 I+ x$ {1 N# F2 a: H( f" K7 r
: r* H5 @; s- ?
to update-class-plot
2 X5 y% j# `1 p" D6 m- Y  set-current-plot "Class Plot"
1 ^7 g" \% l7 o; p- T% r1 I  set-current-plot-pen "low"  M6 w9 z. d; A& P
  plot count turtles with [color = red]
3 i9 c/ }& [$ O& C1 }  set-current-plot-pen "mid"
- f1 y" ]' ?, T9 q* w  plot count turtles with [color = yellow]' j. v- I, O) q9 l* E+ F) Q7 \) n
  set-current-plot-pen "up"
+ d% ^' f! O! O3 N  plot count turtles with [color = green]
; }9 K5 o" x3 j! V" }- B6 a/ |end
% M1 t' K0 U5 K8 n7 w; g  U
2 d/ `1 v+ T4 R- ]to update-class-histogram! Y% D, E0 P4 y' D7 V
  set-current-plot "Class Histogram"1 U' Y$ e& H% n+ d6 }9 J+ ^; M6 i7 Y
  plot-pen-reset$ g- S, P. |) v, o
  set-plot-pen-color red
! k) ?( f' m. o* X8 G$ N0 K0 B  plot count turtles with [color = red]
# F9 h: f9 R' C1 h& N( _  set-plot-pen-color yellow
0 _7 T3 c- ]2 F1 m. W  plot count turtles with [color = yellow]
; h4 f7 ~# c4 s  set-plot-pen-color green
+ w: d7 X3 f$ D2 `& X$ Y) v  plot count turtles with [color = green]
* w, g* u3 D) R: \& H, }. m- f) dend: j% c6 o/ j, a! j; K
to update-lorenz-and-gini-plots
; Z# |/ [0 b  y1 j, ~# M  set-current-plot "Lorenz Curve": }! f  c8 Z/ ]# P# ~6 J" F
  clear-plot
5 ~8 L' e9 E" U! j
/ L; N, Y) o9 f. z  set-current-plot-pen "equal"
" d' l% ^: k* s8 W3 T  plot 0
  e  L: b$ |/ f  plot 100$ @/ y# Q3 r; X( Y3 k6 o
- ~8 N  |7 B! ]" w& j# g- G
  set-current-plot-pen "lorenz"
6 n/ O5 ~0 [, y5 o  set-plot-pen-interval 100 / num-people
  Q  G5 g/ h/ M  plot 04 O  z. Z- X4 z6 c7 ?

9 C" G8 y  ~! X9 y" B: G  let sorted-wealths sort [wealth] of turtles
' V, P* _( X" a& v8 \. _0 M$ e* l4 q: ]  let total-wealth sum sorted-wealths0 ?/ \# C  Q* X! Q
  let wealth-sum-so-far 0% r0 `$ D/ G4 W2 I1 J
  let index 0' G1 C$ w: \/ r& M7 b8 H
  let gini-index-reserve 0
! ~% x1 i3 [/ N0 O7 E- R0 j) }5 d6 m7 K6 H" r0 V: `
  repeat num-people [
; X' G$ X+ x% r9 Z5 h, S  @& ~    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)3 `5 R+ b8 r+ |  U  ^! P
    plot (wealth-sum-so-far / total-wealth) * 100$ |% G, T& F* ]$ Q6 H  L0 D
    set index (index + 1)
) B: A8 ^: m3 b: e( D# z6 W    set gini-index-reserve
% s) T4 l$ A. Q9 r; S2 \/ b      gini-index-reserve +
! {0 R% t0 R0 C      (index / num-people) -
" n* U7 Z. {* R! }- ~3 o! M* \4 H7 D      (wealth-sum-so-far / total-wealth)
2 B3 i! |6 w4 ^* J& D" z: }' S  ]) m2 Y: j9 r+ C
  r+ m  Z  M3 t9 I  v
  set-current-plot "Gini-Index v. Time"6 R4 I; C# e  {1 y8 f# N8 R) d/ n
  plot (gini-index-reserve / num-people) / area-of-equality-triangle
- R: m# N3 G+ Gend
1 a, C9 |9 f: b* c3 g- D6 ~to-report area-of-equality-triangle
2 C$ O; ~- Q" p: C2 I6 N2 h  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)+ N' k/ P# F$ S
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-2-1 23:33 , Processed in 0.014922 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表