本帖最后由 GJM 于 2009-12-5 21:43 编辑 * z2 a, a" H4 i+ E& x
% M$ S% a4 |8 ~0 r" ]; ]/ v
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
2 ~% x, U3 Q ^* `& ^3 n7 Z3 K9 [) X% i
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
+ ^1 R& J: A/ s$ W. O+ @* x2 g
& u& M+ J' k" s9 V6 U--------------------------------------------
; `1 R r( x: s3 V9 C8 Wbegin P_something arriving
7 Q+ i' R0 p1 }/ L9 U1 o3 T move into Q_wait$ H7 F( ]2 I9 Y, I H" y
move into nextof(Q_mA,Q_mB,Q_mC)1 J* ?8 S! S. X5 W7 ]
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min; N9 K& v" k$ W$ u* b
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
8 K( P; Q0 W/ Z3 x- R send to die
% K5 @ e# L" I# P, G: Fend
" ^5 V1 h) R" Y3 @% o6 b- S* J 4 F* b' f- j( ]3 _3 s& h# @
begin P_mA_down arriving6 z) ~7 ^ W2 }! u
while 1=1 do . G8 C. t5 T( [/ A5 O5 |
begin, E i1 i5 x- U4 h. }
wait for e 110 min
+ u9 {$ ~! m- f take down R_mA
) b. S: t+ k+ O% _- P k wait for e 5 min! X3 F. x- N- a1 X! }1 M5 K
bring up R_mA
' t0 z1 `( Y: q5 L% h end% _0 @3 H! H/ V# d: f
end
6 S" h( ?4 U7 G4 | $ Y! p8 U' t) h
begin P_mB_down arriving5 a: b, V9 W; S0 S
while 1=1 do6 Z6 \& l6 c' n8 k: f
begin1 A' A, N) a) T8 t! {2 s* U* F7 A
wait for e 170 min6 m& i+ k5 h) R0 T/ F7 K' x
take down R_mB3 v/ y2 A8 d: y0 l
wait for e 10 min- L* E: b( }' q8 r! ^
bring up R_mB
$ b2 F1 x# w' W/ w! }( Y end; r( ^2 }/ |1 x& L) q$ ?
end
[' v2 C5 e7 d! c6 e 8 }4 ^( B4 w {8 }3 C
begin P_mC_down arriving
- }' P- Y/ t- I1 E* s ^' O while 1=1 do
& V9 z' M& K( s* v' i/ E begin
6 G. V9 x7 E) j1 ` wait for e 230 min2 _$ }4 I2 ?8 J1 W$ Z8 d" H9 W
take down R_mC
% k, I- ^9 q, s& Y wait for e 10 min
& q+ O5 z3 I. q: _% q bring up R_mC
" w2 x5 F* Z. C5 j end
, j$ W4 |5 U0 m, Jend2 J& U9 ]# O* [( X( V, z/ C _$ `
% N; f8 a% M) |
begin P_mA_clean arriving
9 Q, \1 [/ K2 ]- A/ I' v& Y while 1=1 do
& o* A1 f* s& I. H5 M) F begin8 ?7 X4 ]. X! Z) w1 W
wait for 90 min
- k0 s4 G8 ?+ I( U take down R_mA9 o( Q3 a1 L. N7 m- B$ Z+ U1 J
wait for 5 min
* ?, X5 N/ q* L3 A! W9 } bring up R_mA a. Z& R8 a5 T1 l( O" r5 s
end: q, T a; l: a+ j. F, X
end
5 j* _- e4 ?' d) v& n2 r8 @( K 8 I* z& u7 R4 i8 w( B8 p. q
begin P_mB_clean arriving
4 ^) f4 N. [6 p* m while 1=1 do+ z7 N4 e0 z( H* H- i4 i' m$ w
begin
" Z: H- h2 V2 ]. S# z5 D! x# ] wait for 90 min
1 x5 v& U2 B) a take down R_mB4 f; s2 g! K4 A# {6 q: |8 B7 G
wait for 5 min5 f7 E3 @! k* r/ m" C$ _
bring up R_mB
1 Q$ D' s0 h6 U L; w K6 F) f end4 Y3 i2 {* N& T3 w
end" @/ z$ `+ i" l' P% j" R
2 G @/ M0 Y) b7 M: Zbegin P_mC_clean arriving& H' n, s2 ?: b
while 1=1 do( J I; z% _; D2 }4 {3 ~
begin
9 s/ U2 T( o! h7 [9 Y$ v! n wait for 90 min
( e4 W& Z2 ~3 R& i+ I) u1 _ take down R_mC5 b, C$ C7 I) w' d; ^8 ~; I3 Q
wait for 10 min
0 `9 W7 s/ B d7 x2 V/ j. V bring up R_mC, }* S6 }3 C9 t! G9 z; ?
end% E$ d$ x S: ~ ^# c, \: K
end- ^! b4 o {& K
----------------------------------------9 c3 z! U8 K; Q' H) i+ d
: n- T+ j" F6 i# R; EExercise 5.9# P0 I. x0 I) c' H
; I. n" O: X6 k5 C `; z+ ?
/ w( R$ { L l c7 Z0 [6 o" y& ^Create a new model to simulate the following system:
5 ^- R9 q8 l$ E' m7 k1 D/ F. YLoads are created with an interarrival time that is exponentially * p/ y- g9 q! _+ D! A; \
distributed with a mean of 20 minutes. Loads wait in an infinite- w* p' Z) R4 n7 i. u4 t2 F
capacity queue to be processed by one of three single-capacity, , C& r' g2 }! T. t
arrayed machines. Each machine has its own single-capacity queue " X9 m% E" ~ _7 K g0 Y. G* ]7 _
where loads are processed. Waiting loads move into one of the three
! R5 a9 a# t5 a) Fqueues in round-robin order. Each machine has a normally
" ]$ X6 C5 H$ C( Ddistributed processing time with a mean of 48 minutes and a standard
* U3 E# @. r+ {" T" l, Tdeviation of 5 minutes.8 D! L8 T. z3 ~ x; I( j
The three machines were purchased at different times and have + i- q" f/ q2 @; o" m" q/ O/ \
different failure rates. The failure and repair times are exponentially
! J# }- ~0 c- O% p- Idistributed with means as shown in the following table:
9 {2 U2 Y, a9 c9 @Note The solution for this assignment is required to complete
3 _4 n0 w' N. y/ F/ T+ d/ cexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
( T( a" l; k, ^" L1 Vyour model.
% i- l8 }, p" z; e" l! F& f+ {. l+ U/ ^+ L& V
MachineMean time to failMean time to repair
6 U) S- @3 ^8 D9 [* \; iA110 minutes 5 minutes
9 `* i- l: M7 f% k. W! |B 170 minutes 10 minutes
8 V) Y& p) Q. z- @1 Y3 w- `C230 minutes 10 minutes
) D! ^6 u5 `; ?
' h; C7 j2 `5 Y) [; @8 g/ |The machines also must be cleaned according to the following T/ Z8 o o2 B$ Y
schedule. All times are constant: 3 s0 j( `/ z1 T/ ^( h: \
# z. k0 w4 w v8 b1 bMachineTime between cleanings Time to clean* J& A: Z& W: z2 W
A90 minutes 5 minutes
6 b: N! c0 R' J G& GB 90 minutes 5 minutes
; ~, r5 A( O; M1 {! `, | OC90 minutes 10 minutes
% _$ d9 r1 f E. m% _9 w
( S; M6 T4 y6 i$ Q3 N# H# J! j$ g7 z# gPlace the graphics for the queues and the resources.
- E& x+ k3 e9 k" V+ v* y# ARun the simulation for 100 days.! O5 q+ n4 ]. l0 M% g
Define all failure and cleaning times using logic (rather than resource 8 e8 {, L% {6 U
cycles). Answer the following questions:2 B h/ \, d$ u/ ]/ S& J
a.What was the average number of loads in the waiting queue?& J: j" W8 d, J# x% B. W
b.What were the current and average number of loads in Space? # L# ~( K- |( U$ E
How do you explain these values? 5 D( }/ e1 m: V# e$ Q0 S
|