本帖最后由 GJM 于 2009-12-5 21:43 编辑 * ?9 Y' J, @- N- N
% u g! I9 z, N5 a8 Q6 ^$ W& M底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
; u/ _' w& h/ [: J7 U% V! ~
' q% d9 i7 \! E6 q! h不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!; c7 A9 S" Z. i8 R- d
& L; G, y; ?7 c7 a--------------------------------------------+ Q+ v. y# v; [' T7 s9 z5 _. `
begin P_something arriving, c5 _* K) n. d% |$ \& D
move into Q_wait: ~1 n) ]4 n+ ~- F2 `8 ]+ G5 U
move into nextof(Q_mA,Q_mB,Q_mC)- ` r( \, m' j% S, O4 y
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
* Q& ^" e# k% a3 V* N send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
/ d* z" i, c' ^( {- r! X# s" M send to die# U x0 |: u. `1 C& M6 D8 t3 W
end' W6 H Q' h, B5 _% B) y
( I5 u2 y2 D9 U3 Jbegin P_mA_down arriving1 a" R: D9 R5 w- n& Q
while 1=1 do
3 w* q% T: f: S& v5 x begin- U: c ~# f, K
wait for e 110 min
7 w) v; t `4 y& o8 o5 x, g take down R_mA
. w5 s$ Q/ P# u, v7 [* P wait for e 5 min) Y) j7 P4 s* R+ I" W- S
bring up R_mA
5 L0 H- Z7 x# \ N end
( B+ q" F [' J6 s! [end* j* B3 J- O4 ~
2 Q" ?! L( }; }; K& i& @, p" W3 Y1 }begin P_mB_down arriving
& U% U" e0 E- }4 i9 u! y while 1=1 do9 l! p- q- y$ g3 x
begin
7 B* P5 E% }4 S" y wait for e 170 min
5 T8 U: P: g8 v take down R_mB/ u& U* K. u5 M- z, {; W: a
wait for e 10 min
# n E; |' Z1 J# r bring up R_mB9 ]" `. g7 h) M, ?$ a/ d
end
8 M2 C S( Y. |) ?" V; Mend6 B+ N7 z T& m- e- b Q
6 X5 q1 M$ E+ s9 E$ {* l7 Dbegin P_mC_down arriving
% s0 e2 P5 w* v4 a while 1=1 do 4 O6 I9 L* O& V7 ^% c2 h& _
begin
& w2 _$ y3 |2 E$ ^, e* T wait for e 230 min0 |% u% V2 O$ Y# p. L
take down R_mC
6 _% q- W6 ~ x1 J/ e wait for e 10 min6 Y& u! ~0 Y& \: W( i( O7 M* B
bring up R_mC1 h# l8 _; d) U5 N/ J1 Z6 t' L
end
0 V1 v+ k$ a' kend. J( r1 ]2 h, A! M; r# R
* U: Y, P% Z1 h7 U, L. |
begin P_mA_clean arriving1 { I6 P" @0 H. D |
while 1=1 do" R$ V5 A5 h; A9 R
begin
0 s" L5 v- b) c C wait for 90 min
# n/ x0 n1 k9 V, a5 l) Y take down R_mA
1 b( C. _: u! G+ T( q7 m wait for 5 min
& f- k. @8 H) r/ g& C bring up R_mA( a1 o) M7 a) |7 B M
end$ g4 ?6 B$ y: E2 R0 }
end: d9 X4 j6 R3 q- J
2 Q% u, \( y6 N0 F5 R& nbegin P_mB_clean arriving9 Q& q: b' S/ j |* R- s f) b: e! N
while 1=1 do
- M k& k" c4 Q* v. y d begin M9 v! u: V& b9 j- F: E) r, Q
wait for 90 min) b# j$ P* i/ Q" y
take down R_mB
4 n; B/ x& E/ m2 @# L$ f j wait for 5 min* Y4 Q3 Q- M! L1 P
bring up R_mB
) o3 H0 V/ x1 p6 o @2 V end3 W4 n/ J' L6 o
end1 W, X# @" q0 v+ m, F; x
* r7 X' @) v* A! xbegin P_mC_clean arriving
7 L, p+ V, a, c& ?1 K) k while 1=1 do) ]; v: X, B- z' Y6 ?
begin
7 s9 I7 O! ^8 R9 ^6 z2 f wait for 90 min
5 f3 v4 C3 p8 s/ f! ] take down R_mC
0 g; ? e) A- K4 X z; S wait for 10 min# Q' i6 ~( _4 p4 ^# u" S4 {
bring up R_mC+ u- R/ ^; p4 T- x
end
; O7 I" A0 l$ g, n9 N( bend
7 Z, U' v! s+ `0 J& T! {; r----------------------------------------
( A0 f1 Z, O6 ^1 H
- @/ O! ]8 y: r2 z4 J" \/ eExercise 5.9
2 s5 G% T4 J; _4 f8 y; ~
- L3 F9 n3 r, V3 A1 D, ~; q4 Q- H( q% Y
Create a new model to simulate the following system:
% U( u' f% V5 `% m4 ]+ Z0 ^Loads are created with an interarrival time that is exponentially
`- z5 `6 Q+ q! ]' n5 Odistributed with a mean of 20 minutes. Loads wait in an infinite-
" l% F7 o( J4 `! R+ ~capacity queue to be processed by one of three single-capacity,
2 `- Q- p& Q$ K6 E/ t5 {arrayed machines. Each machine has its own single-capacity queue
5 F5 e0 Y1 f* ^. lwhere loads are processed. Waiting loads move into one of the three
' ^ n; g* _* s3 N' Cqueues in round-robin order. Each machine has a normally
9 p# ^* j3 d8 F' j4 j6 h1 Cdistributed processing time with a mean of 48 minutes and a standard
7 P- ^" o( N$ S6 x% }! n$ i6 i( Odeviation of 5 minutes.
1 C" A$ ^" t) A7 p L% }6 KThe three machines were purchased at different times and have 2 z8 v% D8 [) C
different failure rates. The failure and repair times are exponentially " G9 W0 ^% R l# O4 i8 r0 I
distributed with means as shown in the following table:
* P/ h: [ Z: |5 KNote The solution for this assignment is required to complete 9 M: x# H4 F, b( P
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
' R' U4 ]! K3 p) y1 o h8 yyour model. 3 u. C8 h$ Z8 T+ o
: U' T- i+ R) ?% c) Y) {MachineMean time to failMean time to repair% ]' B& W% J3 V9 ^, W( }
A110 minutes 5 minutes
+ B" E3 ^ a8 c3 c0 Q1 v8 ~B 170 minutes 10 minutes1 ~9 _! R" Z1 V# Y x6 C5 |
C230 minutes 10 minutes6 }6 c6 R% T0 c5 C: V% C! s0 f9 ^
: y$ i! t* P9 H: kThe machines also must be cleaned according to the following
[5 N1 d/ X0 C9 O6 y3 Vschedule. All times are constant:
: F3 r& p+ S# `" T* e3 P$ `6 ^$ x: _# e
MachineTime between cleanings Time to clean
7 I" x h0 k9 x0 Y+ k+ iA90 minutes 5 minutes
7 | J! _& b$ u+ b" S; ?( r/ HB 90 minutes 5 minutes
4 b G* f9 \* Q4 X! ?& PC90 minutes 10 minutes
2 |$ r( h* _+ \. N4 n: F: K" { s! {, A9 q( {
Place the graphics for the queues and the resources.
; c/ S. Y* O/ R2 T9 E( h' g$ U4 WRun the simulation for 100 days.
' x) k3 ?: F8 G' n- w( UDefine all failure and cleaning times using logic (rather than resource
7 N( @" h5 S9 W- L5 v5 f3 kcycles). Answer the following questions:
5 f1 k; W/ W8 a! o( Ka.What was the average number of loads in the waiting queue?8 m% j, z" |2 |1 C5 A
b.What were the current and average number of loads in Space?
! N0 O2 [$ y9 L9 x3 }" j2 E$ tHow do you explain these values?
" S' H+ p8 w% z/ B$ t8 d6 Y7 m |