本帖最后由 GJM 于 2009-12-5 21:43 编辑
7 G, r+ U. k, k5 \' p( e0 \
, |9 Y9 ? v, X$ e) J# M底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去) I2 M8 P3 b" }2 [
7 m% J( Z3 t5 E/ _不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
+ Y0 }0 u7 u% k/ D5 @. W2 E
7 X M J3 j$ S8 @( h, J+ [) n--------------------------------------------
8 y9 ]$ f7 N, L6 P ibegin P_something arriving
) L/ D. E+ s4 A) y. D: P move into Q_wait9 a; A' N% Q+ z" `
move into nextof(Q_mA,Q_mB,Q_mC)& a5 y, P/ C# S; q1 s, j! ?
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
3 q! E& x- i1 m. N+ t9 S! t3 h send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)5 m5 \; |1 U+ ?0 w
send to die
& k) ~! h9 z/ h( I/ o% Send2 T0 n" r( G9 K
2 c% ]5 M' R4 G5 \; Mbegin P_mA_down arriving, [* Q" U/ ~% ^/ c. M, r
while 1=1 do
# V, R3 k. m- K1 ?/ W- y( C begin8 p1 Q# j1 Y0 F$ B! e& r! G! P
wait for e 110 min" i, D9 N+ T. s8 q( K
take down R_mA3 K4 k8 _5 Q: @9 i
wait for e 5 min6 F4 _& Y k' z; @8 B6 T: h3 g
bring up R_mA
. V4 R" m- Y9 y end
5 e! n c7 R- m* p& }& z7 D5 Oend
/ \8 @; _7 \( {! ^7 | 1 V$ [& J) y' V. f7 C3 Q
begin P_mB_down arriving
9 T4 c3 o, @4 i; v# y! t( M while 1=1 do
x: U' h; m8 q begin) ]# a5 t/ p( U. ]9 U: ~% I
wait for e 170 min6 F; M: [) i% A$ z8 B6 Y _; E
take down R_mB
7 Y) ?( A1 B# I# y/ E' b: \ wait for e 10 min, F& ]$ G; R% G( D
bring up R_mB' S9 R7 f6 O1 z0 f8 S2 X
end9 t W* o( g- ]0 b, Z0 B$ Z4 L
end" r `$ j4 q! D1 w6 h- w- O& r
: F8 R/ T+ U* @. w; H' \2 Abegin P_mC_down arriving
5 m" k1 k6 K+ e/ |5 \2 g8 ~ while 1=1 do ; z! i! l# n+ R D, q+ u
begin
8 \! Z3 t* @" N& _6 F5 H wait for e 230 min' p5 P3 \# t! ~8 v" _, T5 |2 F ]
take down R_mC0 J) a; E: P' U1 ?/ B1 o0 S- y4 d5 p
wait for e 10 min$ j6 @# E6 a0 o) f" e/ d
bring up R_mC! b5 A% ?) h5 G/ h% t& F. y# M7 _ X% \
end( [! e# F$ O7 g. R+ v. m( h! V
end
! R5 d; ]9 b9 N q/ ?- B. q7 J . c( @6 ^# B3 |) q# w* W6 X! f k
begin P_mA_clean arriving
6 ~# a; `' S" x while 1=1 do7 k# `. t- B; B, }
begin
5 x$ h- K! J( t; k4 P, i wait for 90 min$ i: p+ V% y. R: C; }* s, E
take down R_mA
; c z I: v& q% ^6 ~$ { wait for 5 min
" B1 d# x- b) g1 v bring up R_mA* Q2 Y5 C4 J: d7 M& i# Z
end' D# h" H* C- l$ B
end
! b/ C6 x0 t& ~3 U& q! U8 c ; S; @& E( G4 v
begin P_mB_clean arriving( i7 G4 L3 N* ^9 I4 |. A' A# D: U" H) Z9 L
while 1=1 do
0 L: f% N& w2 q5 E6 p/ `' p/ y begin
* N; b4 F% f, _ X' L& m' Z1 n& j' R* g wait for 90 min# o! ?# V: c+ D! R; t) I, z
take down R_mB
8 d/ A$ R1 a* X4 i wait for 5 min8 z. S( k- I* F* C2 r! i
bring up R_mB6 _- Y' K0 k, C4 `9 A! u: h
end7 U2 d- @% Z" C* W2 l
end6 H% J0 U5 m# k. W+ V* C$ b
6 R$ _( w" n* c: U- ^0 K7 X
begin P_mC_clean arriving
& t& ]3 Q: g) @4 n5 y V: } while 1=1 do
5 W/ b( k* V& U& Z! u$ X begin
" C! y6 D3 ^4 ?' p wait for 90 min3 w$ P9 h5 _& c) C3 @
take down R_mC
8 v/ u7 K! A% f& Q7 V4 \- e wait for 10 min3 L( Z& `8 v* F
bring up R_mC
4 L6 {- ]" }0 \% C6 W" c8 s1 e end* q% Y7 s$ ^/ r
end
$ s' w, h! y( U----------------------------------------$ T6 d3 R, U0 W# ~* U+ _
1 V, }# Z. j* E5 cExercise 5.9
G. W' G+ a3 P( b1 N
9 |: r+ d8 X9 k9 r2 v# g; j! \. |2 o1 Q- r9 l; ~& S5 A. \" H
Create a new model to simulate the following system:
0 e9 N, N" ^" W3 N7 V2 g- JLoads are created with an interarrival time that is exponentially
- y8 ^8 U: e4 O2 E$ I! I' N. {distributed with a mean of 20 minutes. Loads wait in an infinite-
% }/ }' b/ f) k% \& N" [capacity queue to be processed by one of three single-capacity, ) _6 H( I4 p/ ]& x1 N3 q6 K* P
arrayed machines. Each machine has its own single-capacity queue 9 y$ D+ c1 s# u* ?+ b! |" y7 A
where loads are processed. Waiting loads move into one of the three 2 K/ c9 G* I/ ^$ u/ b/ J
queues in round-robin order. Each machine has a normally % o4 R7 `. J% M% S0 ?
distributed processing time with a mean of 48 minutes and a standard 2 M; N3 s7 E7 ^: A. R4 `
deviation of 5 minutes.9 B6 Z1 h+ V3 G; a" j
The three machines were purchased at different times and have " u! s& Q1 f. s0 ]. K) J
different failure rates. The failure and repair times are exponentially . X! |* F9 S/ v
distributed with means as shown in the following table: 8 F$ v+ n, F! `/ z) i" L M8 m2 K5 l
Note The solution for this assignment is required to complete ! A }0 D1 E; i0 ^# y3 t4 Z
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 2 I% T, q% a# t. n0 A
your model.
+ [0 K" X6 j8 l7 A. X+ i/ E3 D: b6 B' ~6 `. T2 q
MachineMean time to failMean time to repair& k- N [3 w% `
A110 minutes 5 minutes0 ^% j5 d E H! Q6 n
B 170 minutes 10 minutes
9 F9 r% b7 B/ ]0 c2 ~! j6 gC230 minutes 10 minutes
& p8 @3 p, X7 e+ `" ~0 p
& R1 R0 l4 e! W/ w. S; D m0 yThe machines also must be cleaned according to the following
' Q! _% @& M' {9 lschedule. All times are constant: 7 T W3 F1 k0 ~0 T
6 M5 _9 G2 l) ~7 X2 l1 t5 H* ^# e
MachineTime between cleanings Time to clean! r; @& n* Z" v- V+ D5 a
A90 minutes 5 minutes
4 p7 h1 d% a7 E6 ]2 bB 90 minutes 5 minutes
( C/ @ i$ Y. m" n( PC90 minutes 10 minutes- \& h) n& Z, D, e! P {
: z$ W3 j3 w6 E3 \3 v8 xPlace the graphics for the queues and the resources. I: N# [1 l9 B1 m) @3 O6 G6 \
Run the simulation for 100 days.
& d" y" [8 s' GDefine all failure and cleaning times using logic (rather than resource $ u i. a6 c4 k6 ?& P( y7 D _8 m
cycles). Answer the following questions:
9 A' v$ h% ?. ~5 B# sa.What was the average number of loads in the waiting queue?: E# o4 ]- C' S3 E) Z2 S
b.What were the current and average number of loads in Space? 9 y i# e& K6 M0 m, y
How do you explain these values? . P$ I$ @6 i1 c& J! |) a5 w
|