本帖最后由 GJM 于 2009-12-5 21:43 编辑 9 }0 a4 s7 [2 d; c
- u# B) Y g# g) f7 |" d+ Q
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去4 Z$ f; c' p& e: i9 w# w
6 v9 u5 \6 D! ^" e, _, {
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
Z9 D) e7 R/ ^* r( ~5 a
! K! O- _! y+ b--------------------------------------------
" L! J5 }/ t$ a8 {begin P_something arriving( `# r, K& u3 I) H5 C' u
move into Q_wait
0 K5 M( B/ C# L! S move into nextof(Q_mA,Q_mB,Q_mC)& b2 w, d' ~1 q6 E* p
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
1 n8 b( G3 f+ l: G# [ send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
2 C3 h8 }$ m9 Q6 ^3 ]/ E( | send to die
' Z3 q/ N# ^0 c dend
, o. l% r1 b+ { , w3 d: s' s) E! @. F# M
begin P_mA_down arriving
g- i5 ]% \+ l- t" U! z0 E while 1=1 do # U' u* Z% `5 E$ @' g4 c
begin
% @5 a2 r7 `% a) S, m wait for e 110 min
( C4 `( F- X6 Q4 p* G! Q0 z, ~ take down R_mA
8 l5 i& C& c8 S% a0 M) G9 T- l wait for e 5 min6 b% N o) q6 x! q1 U5 d8 x) u! G
bring up R_mA
8 A' _( s: }; A4 k$ R b* s: i end
3 v( q3 I7 g; j6 J4 Yend
/ o$ u! y! D4 W5 g
% j* L- ?. N: obegin P_mB_down arriving* ]8 \% y5 P& S" X6 ? ]( u
while 1=1 do
. r P! `6 N4 o" d7 P j7 Y begin$ s6 p1 {) L7 ?9 w) b7 d( J$ J% q/ H
wait for e 170 min
0 [+ A+ _# \/ m/ m6 V! t7 n take down R_mB
9 ~! o, |0 k* n! ]. n7 ^ wait for e 10 min" z0 J- {4 K/ _( d& z# E
bring up R_mB! v) R5 [9 @; T
end. P) }( K1 n$ s, _) _7 H& W& F
end8 {4 `2 G" c( N/ o7 [6 m/ z
, s( j. h% l* _! J$ ]
begin P_mC_down arriving1 J" H5 s v6 \7 e
while 1=1 do , s- f" r5 H4 u b% X
begin
, T2 Q6 q& Y, }3 T wait for e 230 min: N8 v+ I; e: P, I: v, M7 ^
take down R_mC3 R p- W5 i l4 Q1 |" w" L
wait for e 10 min
6 a5 N+ X9 l4 T8 L- w bring up R_mC
3 P) R# w* ?4 v: y end
$ r. L: K- |1 _% J# |, R% xend0 K- v2 N: ?" x2 p: ?
9 G/ |# Y- ]4 E% F# u& D
begin P_mA_clean arriving
8 i( o, c7 r. V2 D& p while 1=1 do. a, ]# E B3 s/ j" J% J
begin* ?$ x# S5 V, g3 |9 X1 o5 o1 U
wait for 90 min
( `/ [- k' x& h: I& B* D take down R_mA4 Z5 S" b4 h8 d+ g
wait for 5 min
4 x+ R# K. k) C7 m2 j$ T bring up R_mA
2 J5 \$ d5 O3 Z end
) g- M B- S) uend3 ^7 x; L! Q) D( `2 r \6 L
% a; z+ {* H0 f% z" I
begin P_mB_clean arriving; X, R! h4 N ~$ H5 C4 x/ I7 b
while 1=1 do2 h1 c/ O8 S9 A0 N- ]
begin
1 P& q$ r- ]1 M6 Y$ A wait for 90 min
# e3 B; v, T: |$ ^4 a5 { take down R_mB
* K; t: h5 B6 {0 m4 L; P. }+ z wait for 5 min
$ v5 |( t+ ~+ l bring up R_mB$ \# N, Z) G# Y
end6 D* C9 q" J9 q* }! S7 q5 ^) V
end
/ ^- [- Y+ L- {: A4 `0 {) i
: i5 b; B/ @ Q, Z( W, Qbegin P_mC_clean arriving
. i" I7 j8 `! p- @: T5 e while 1=1 do+ C6 Y$ L3 w! p" X
begin4 g' z. [! r% W7 C V2 @6 ?
wait for 90 min
! s6 D# [2 w, A3 i take down R_mC
' e9 g# c" l {# r8 T wait for 10 min
- w4 W2 A5 n$ ~6 b; d bring up R_mC$ }7 x A2 |6 @7 y
end
/ g: y. C& s0 o5 send
/ c& _; n! k# o3 m7 @0 g----------------------------------------
?* M# [9 d/ I; O' h + Y9 X1 Q9 n% h. c; n8 d: Q
Exercise 5.92 Q# C- T' J m5 A) S
* n' ?% W5 \. _7 j$ T) ]3 ?
/ N" i8 z6 }4 b+ g e6 k
Create a new model to simulate the following system:5 q9 b1 j$ w; y2 N5 M: l# a* H
Loads are created with an interarrival time that is exponentially
; M8 q7 e8 I- `& y/ Z. F0 x% Hdistributed with a mean of 20 minutes. Loads wait in an infinite-
( W6 N3 V& ]+ P; s' `capacity queue to be processed by one of three single-capacity,
7 U6 M% _( h! W* E! I5 H8 G" larrayed machines. Each machine has its own single-capacity queue
7 Y0 E* U h. G" G- Fwhere loads are processed. Waiting loads move into one of the three
) x. H# x9 b3 f/ j( ^queues in round-robin order. Each machine has a normally ( [. U0 n1 ]& d/ R% }
distributed processing time with a mean of 48 minutes and a standard
0 r O6 A" X0 w- ideviation of 5 minutes.
: U" s. K0 K6 p% jThe three machines were purchased at different times and have 5 I. |% D6 ?5 x
different failure rates. The failure and repair times are exponentially 0 X5 x# b1 }4 M H K
distributed with means as shown in the following table: % u7 w6 a$ L6 s8 z: ~3 b
Note The solution for this assignment is required to complete
' B) a3 L; B* Yexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ) D6 q$ `/ \" l4 g2 c
your model. / u# X5 m" B, G
1 H) ~+ w8 o6 ]* m/ F2 X8 F3 BMachineMean time to failMean time to repair" V+ o( G2 |1 j0 V: ~
A110 minutes 5 minutes- |' x T C( o- Q0 Q
B 170 minutes 10 minutes# A1 N* g2 h2 w% x5 s& n! J
C230 minutes 10 minutes
) z w# L/ O9 o- H4 y
- J* h2 R E+ b2 m( y% tThe machines also must be cleaned according to the following 9 @" ^( t1 H7 a4 n( u8 c1 Z
schedule. All times are constant: & I! g5 P- C7 y' b3 Z. }9 j
$ ]6 ~: t" _; e3 I- G* `MachineTime between cleanings Time to clean
& P- E, p2 h4 ?% jA90 minutes 5 minutes
/ D; C3 d9 @: Z1 PB 90 minutes 5 minutes
" n+ y: S: x; S9 V4 [" aC90 minutes 10 minutes
# N& T! M. r" q% V! I, Z
|. ~/ I7 ?" [5 B" ]4 FPlace the graphics for the queues and the resources. 4 P9 ^8 O( B r8 ?7 `' ~
Run the simulation for 100 days.
' N) ]6 }8 S; [# ?8 CDefine all failure and cleaning times using logic (rather than resource : H) ^* W- u! C: _/ \
cycles). Answer the following questions:* a% v. p$ `% x% H* V" V7 X* N
a.What was the average number of loads in the waiting queue?( }5 O9 G% }! q
b.What were the current and average number of loads in Space? ' ?; ]! o7 w5 ^5 e
How do you explain these values? " d% w( E0 T3 }+ x$ b( h
|