请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
- ^/ ~$ d) {: R& Aglobals8 [) n+ ^3 P G, ?
[: ?, ^" i! `* w) ^/ _+ S% v
max-grain
( h; a! k8 s5 }$ c) a+ U
' L1 z; O$ Q3 s7 T3 B" X]
0 [3 h! u) ]5 Z: @ D2 G, e- [4 P: j/ ^' A
patches-own C' J3 s( [- \9 m% N# [- V
[, q0 F/ r6 s7 j. o7 ~% o4 r
grain-here 3 T* ?; ~$ d; ?! [! m" b8 y+ d
max-grain-here 5 @. d8 A) U5 [+ B* _) q
]
6 J4 H# ~9 V7 C0 A. q* h9 F1 k) \
turtles-own
' ^/ h7 F# b' ?4 q9 C% r[) @9 g, ?( Z/ m% E3 r h( G: v( a
age
/ p: r$ R8 d2 q- h+ Z2 `/ A2 g wealth + K$ g4 g w! M/ I: p
life-expectancy 7 S/ S, V/ A1 \" F
metabolism 5 O/ i) e$ h' d" Y7 w/ R
vision Q1 |! T( X! l" {4 V5 @
inherited
7 B: D9 o. o4 L. b1 C, S]
( Y9 B, G5 f0 b. U' I( d( r! k. M& f1 B+ W5 p
$ e" M. [2 a, K# F, x; ^to setup
4 |( e$ d& b! J4 R1 w% n ca
) E/ N f+ D4 e- u set max-grain 50* p3 ?- q4 e! s
setup-patches
# c Q; W' n& N4 W+ A5 T setup-turtles6 T2 K n. E" b1 _+ x
setup-plots
7 E+ X: |3 ?' J2 U U3 t$ @! h( s update-plots6 w+ J1 ^% P o9 s% y' q: m* X I
end1 w. ]: k% f6 s1 N; }
to setup-patches5 P4 h% `& s: B; u: E
ask patches0 m p7 B. x& x1 ]0 Q1 R- K: Q
[ set max-grain-here 0% H9 ~9 C8 D! t: t8 m
if (random-float 100.0) <= percent-best-land
, x: Z; o% o3 B8 c" N# L [ set max-grain-here max-grain
- N) G, v( s; x& N @6 Z set grain-here max-grain-here ] ]/ |% g) U, N9 _7 r* l5 ?3 Y
repeat 5
/ H5 x" e4 P+ x0 L) N) a, M [ ask patches with [max-grain-here != 0]
# N- \: X( {& d7 o [ set grain-here max-grain-here ]7 M: F' \- a) `/ `; O
diffuse grain-here 0.5 ]6 f0 h3 {6 Q: U& S2 O
repeat 108 j. A& w# G( W/ z/ j8 s f2 t
[ diffuse grain-here 0.5] ! }* }" x" v% X
ask patches
) J- ]6 ^5 @* } l8 l: s [ set grain-here floor grain-here
5 s" m! U2 m" T$ ] set max-grain-here grain-here 9 ^% ~: y5 h8 T
recolor-patch ]* ~& K0 z! y5 K/ E+ J
end
. w g/ j w( ^to recolor-patch 2 j% Y0 \7 P! Q3 l; C% E
set pcolor scale-color sky grain-here 0 max-grain) ]* }; X( W1 T; ^7 a! C' w
end
' {! M. C% d& ]4 g0 @% e2 xto setup-turtles3 N6 i; X# e6 e B& S, L: }
set-default-shape turtles "person"* R6 C( g5 }/ U J3 E% R
crt num-people
% h- `" _ g# T7 D" X8 M/ \ [ move-to one-of patches $ O8 i% L2 k/ @
set size 1.5
* ~) k, Z$ G3 x) N5 C0 W/ d- r( G1 f set-initial-turtle-vars-age
( I) j: M/ k m2 N( j- e set-initial-turtle-vars-wealth0 U8 C5 [: O* V& D; }
set age random life-expectancy ]
+ _- S" O1 R9 K$ R5 X* P1 z recolor-turtles
" G' [8 n$ f4 f6 l) w6 M2 aend. O) H7 X# \$ z* C- h
* h4 e; `0 ~7 N6 ~* f6 Eto set-initial-turtle-vars-age( E, j; ]- C b3 {6 z
let max-wealth max [wealth] of turtles, j. B1 P$ Z B0 o
3 \& r8 u5 W* C% p! q& u" `9 J
ifelse (wealth <= max-wealth / 3)
- f* Q- J6 v8 m" d [ set color red
# j! `" w# }9 z( q set age 0
4 e' n6 T) L! K+ p$ z face one-of neighbors4 . R2 Z( L# J9 L( N$ Z0 r
set life-expectancy life-expectancy-min +
! g4 |2 R7 Z& M6 C" c5 x9 b random life-expectancy-max
: M/ r1 r& h# H0 r7 L4 w L set metabolism random 1 + metabolism-low, g+ T6 v$ w) E
set wealth metabolism + random 30
8 ~7 i- w2 }9 M @8 U; X$ b3 X set vision 1 + random max-vision
1 K3 R3 d3 {; z. A+ Q) r set wealth wealth + Wealth-inherited-low ]3 e$ a' X+ W# ^
[ ifelse (wealth <= (max-wealth * 2 / 3))& S0 B) ~* i& f2 ~
[ set color yellow : S+ A0 N% f: W% V
set age 0
8 e# B4 p: I$ ~& t! N J face one-of neighbors4
* a# N; b' o2 S$ q8 M' U* K set life-expectancy life-expectancy-min +
& Y, X/ l( N; o8 e& [ random life-expectancy-max + 1
" C2 o |+ g4 j/ L set metabolism 1 + random metabolism-mid; [! T: t1 G; k; A
set wealth metabolism + random 30
- D& E/ S4 Y' W% G2 `, i$ ^# } set vision 3 + random max-vision
+ n/ z0 _0 R n) D- w( Z6 d set wealth wealth + Wealth-inherited-mid]6 V/ q: I" o4 V
[ set color green : w' q% x/ ~+ N8 F% U- M. a
set age 0
, M4 g# }) H0 k O face one-of neighbors4
9 Z! t% h( U( Q9 _ l set life-expectancy life-expectancy-min +
& N4 u* l- W7 y; x' v3 [ random life-expectancy-max + 2
7 q9 I9 V# D$ d; p6 Z6 u8 V set metabolism 2 + random metabolism-up4 ~+ @* K% }' q0 s% R
set wealth metabolism + random 307 C6 w7 U$ a( N$ b! r+ r7 |& J
set vision 3 + random max-vision$ o0 n" s8 x) D: T4 R3 h
set wealth wealth + Wealth-inherited-up ] ]
0 g- c5 k: J' d _7 {
: ^ p7 e( }6 v0 r/ X, F8 Yend3 p0 g0 a# Y5 u& H
to set-initial-turtle-vars-wealth
2 j* u. v0 X# d u+ ?1 z) D let max-wealth max [wealth] of turtles
5 c+ t8 [9 ]% ~, ~5 U/ `9 G- f set age 0
8 _& s) j; e o- A g* b0 X face one-of neighbors4
2 @ o1 c+ \! Y2 e3 N6 K4 X set life-expectancy life-expectancy-min +
1 q; j. }" E3 j" J. e random life-expectancy-max 1 w# H8 @3 G; P, }- P4 o f
set metabolism 1 + random metabolism-up
+ R& r: J* f, N8 y3 ]$ D set wealth metabolism + random 30
2 U: x! d1 c4 e8 E# A% N set vision 1 + random max-vision 1 P# E$ r3 w1 }1 S8 j
end6 G4 m# P9 [( g- ^7 i) P( \
to redistribution
' B# \8 X' V2 h5 ?$ {0 J! X8 Vlet max-wealth max [wealth] of turtles
1 t$ v: B: _/ ^ m" Y0 ~let min-wealth min [wealth] of turtles* U( i8 F n* V. M% t7 f
if (wealth <= max-wealth / 3)( m8 D! R7 l6 O# v5 b
[set wealth wealth + Low-income-protection ]
( S8 y w- p0 j1 E6 dend/ I4 d3 T5 t% @# H% s5 s9 m
4 [, q/ \4 K5 X8 j- t8 P* ^
to recolor-turtles
- s7 V6 a1 c4 G: x. d. o7 @% e let max-wealth max [wealth] of turtles
, R# e' g' ~9 A8 |$ ` ask turtles
2 M4 j B) w: p# o" t [ ifelse (wealth <= max-wealth / 3)
R# w% F8 `# ? [ set color red ]
3 k2 `. ]4 W5 _7 n q9 Z [ ifelse (wealth <= (max-wealth * 2 / 3)), S/ X7 m" k! p9 ^2 N9 Z
[ set color yellow ]# N$ D- ]5 A9 p4 K% ~2 K6 @
[ set color green ] ] ]" T$ \* L9 F4 `8 e3 n: [
ask turtles [ifelse show-wealth?
0 X8 d$ G4 [ V$ W [ set label wealth ]6 Y$ } Q3 i1 F
[ set label "" ]]
/ E& P3 K4 J& f& Xend7 T+ Y% U5 p8 m$ H
1 ^6 I/ k8 V& u: E v# D ~to go- \/ m' g) b% Y* M
ask turtles, ?7 y% s; `8 E3 B, q# W
[ turn-towards-grain ] V+ X6 P+ S2 g
harvest
# l0 p2 A! \4 T8 \/ m ask turtles4 z, N( u3 u% I8 y
[ move-eat-age-die ] i( A: Z% I# y. H; I; U
recolor-turtles
S9 b D! D7 E( k4 L if ticks mod grain-growth-interval = 0
, Y+ C: t2 s6 i! z [ ask patches [ grow-grain ] ]
! g" \7 T1 e3 X0 U7 x- G7 E
1 O1 C: U: U& H5 b/ j* s' B if ticks mod 11 = 0( r* s/ Y/ I% v* k) k
[ask turtles3 J# S/ k& p# T j1 A2 c: Y+ a
[ redistribution ]]! g, s2 J2 z2 m5 U0 m) _
if ticks mod 5 = 0- Z x$ `: ^7 }' Z) x& H! l
[ask turtles
4 ~, n3 S$ l- j1 Z% H+ I! g [ visions ]]& ?- d. t3 Y9 Z/ ~
tick7 b3 U* _* T, E1 M
update-plots0 [; z0 F& Z6 m" |
end
2 x Q/ ^- ]6 @- hto visions0 d7 i5 D% p0 x
set vision vision + 1
0 t2 P% Z7 F6 V: r. g% X* Kend
, E1 X6 U0 G8 s' P
5 ^9 L2 T8 \+ L4 L; g6 s( {/ V! b2 U4 u, g$ ?
4 _! ~& O! H4 k) m9 b: y
to turn-towards-grain , H+ N5 H: S" F8 ~, d! z0 H2 f
set heading 0; L4 [" p4 v0 @+ P* _- C/ I4 S
let best-direction 07 U7 M; \) R h* C# g0 s
let best-amount grain-ahead
) u3 b+ E0 C [- G set heading 90
! b- e) R" C6 r+ C( U: I6 w if (grain-ahead > best-amount)& b+ U" i' Q3 m) p) T7 z7 z
[ set best-direction 90
) p, [) b- @4 {5 ~7 g$ W+ h set best-amount grain-ahead ]" g l) e. L v0 t T1 K
set heading 180
% _8 K* B3 l6 x$ t; ^9 Q$ f if (grain-ahead > best-amount)
' H3 f1 t& ?0 X) d" K8 m/ I: b [ set best-direction 180, X2 n" W7 Q, P- e" @/ z
set best-amount grain-ahead ]
) u9 g9 K' A% R+ {( }8 _ set heading 270
+ v7 D2 P: p& Y' L; |' E, ? if (grain-ahead > best-amount)3 I, n, [ D) i. b
[ set best-direction 270
( ?6 ]/ M1 F5 H7 P8 \9 ` set best-amount grain-ahead ]
- X% D3 v1 f4 @8 @0 I9 e set heading best-direction z, n/ V& B9 C- c3 k9 F+ L
end F, x2 I# W9 U! e# d* e8 E# p9 r4 x
$ ?8 ^2 r8 G: Y+ [( x* A; ?
" c T0 m. m# Eto-report grain-ahead ) ?% P2 }7 _6 b% Z. d5 U4 C
let total 0) Y, A" v% p3 E
let how-far 1
+ a% z6 s6 @5 ~( J4 o repeat vision1 O: D( m2 e; f' L4 J$ S$ b
[ set total total + [grain-here] of patch-ahead how-far3 y. C7 m5 h: r
set how-far how-far + 1 ]9 N+ O8 S3 t4 ?4 S0 H& Z; W
report total1 c6 U% O; E! {* w- k
end0 S$ f2 ~. J& X
9 f! Q$ B7 g2 k8 V+ U
to grow-grain 2 _: ]7 l( Z; y9 `
if (grain-here < max-grain-here)
* {3 z7 q3 Z0 b9 P# s+ ?4 @ [ set grain-here grain-here + num-grain-grown4 A }# t3 m9 Z/ B% [) r! o% t& v9 k
if (grain-here > max-grain-here) c' a' W7 ]7 Y: \5 Y% @
[ set grain-here max-grain-here ]+ S; @6 P2 L' ~
recolor-patch ]+ o2 z9 r: V+ ~( H K6 n" g; {
end( ~' H" k! e: A/ J0 s( p, x$ P
to harvest; q/ E8 j+ x. N& `7 K
ask turtles
- L7 l& e, Y% c# S! Y [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
/ S1 f: ^' ]* g0 z ask turtles
! V6 E. \; ^% H. _ [ set grain-here 04 r* \3 c% }9 [7 x% F$ e! ]
recolor-patch ]
# Q9 z! n4 @$ i& l
2 J4 V) j, p! l7 h( tend
1 @' K2 S/ A1 A/ Q$ v+ W
" z- J9 `+ }! _to move-eat-age-die
' U) E6 a; j, T8 D fd 1
, T$ H6 t+ P2 `/ I5 Z set wealth (wealth - metabolism)5 U+ A! K% y0 Y3 H
set age (age + 1)
' u; }4 _4 d, G if (age >= life-expectancy)
! c) _9 r4 K* E- T( r [ set-initial-turtle-vars-age ]8 Z; M& e$ g# C
if (wealth < 0)! c1 i4 J! e4 \) ^: }3 t( G8 K t
[ set-initial-turtle-vars-wealth ]" Y+ [9 {+ L6 | o+ c0 ?) S
8 E7 q: Z6 L9 x) o4 Tend
* S; t. U1 _3 m: I
1 I% x" j6 s2 `$ |+ ]
$ j d) f. n* c2 E" dto setup-plots6 D: u; _) q1 N6 Y$ V/ q) M
set-current-plot "Class Plot"& G+ w6 ?$ B7 p, h- H2 r
set-plot-y-range 0 num-people
9 Q2 m7 o6 K: {' n O s! n set-current-plot "Class Histogram"/ e ]+ r! N( C! P; Q
set-plot-y-range 0 num-people
5 h1 L3 j) ^" w. x3 G6 e8 ]end
& `/ w& G0 `; G7 \1 L" l+ q) A# p
to update-plots
3 _5 F8 g% V) p, F) b- d4 @ update-class-plot
8 J. s. C/ ~6 q. [! I9 v update-class-histogram! K/ r5 G: `5 {: J
update-lorenz-and-gini-plots
4 ]; O! b" ^5 P3 m& S6 I$ A- ^end
) e# w u* H2 D! e: B+ f2 w# i
6 R8 l" V3 M3 N' w; T w( a9 bto update-class-plot# Q: ?/ o U7 t& t$ V, l" E
set-current-plot "Class Plot"1 B7 X7 Q% d! V" D8 [/ `+ {4 ? ]8 l
set-current-plot-pen "low". V& y5 c) x; y0 M. d# ~
plot count turtles with [color = red]) U- E- A* t: _7 H8 s
set-current-plot-pen "mid"
# q# h/ b; ? d! U _4 _ plot count turtles with [color = yellow]" b- \5 X# F- V/ }) B
set-current-plot-pen "up"
9 A; y6 X4 ^% d% k1 h+ x plot count turtles with [color = green]
8 J, g( T, y4 y& L% S$ Q4 fend
! j4 l n. h) C: @" C) m6 D
1 _! D! H9 Y# j3 Qto update-class-histogram: \- o; N6 p% z$ t+ C" F1 r
set-current-plot "Class Histogram"
" u1 r7 W3 ~4 K) E plot-pen-reset
7 e; M1 C! O) Q4 M5 t( @6 e T set-plot-pen-color red
5 j" E4 A$ L9 }3 X7 Z plot count turtles with [color = red]1 @% x" y8 z4 m
set-plot-pen-color yellow
( k+ f6 l2 k: W. H/ ?- `) E plot count turtles with [color = yellow]
. h5 h. e1 d/ C' B( h set-plot-pen-color green9 Z' r+ k4 a8 d; ]. r8 L
plot count turtles with [color = green]. u+ z: ^+ ~! f$ p4 p. B
end
# f) F' `3 f+ tto update-lorenz-and-gini-plots
l. I$ ^5 j. [0 \2 w0 V% D+ B, A3 k set-current-plot "Lorenz Curve". c1 ^8 z& D8 Y1 @
clear-plot
2 W i. e* b! q% F" B+ _& q4 v4 g, g; u& r. x
set-current-plot-pen "equal"1 V2 H7 \! K5 i% r: Z4 S
plot 0
5 `0 h1 z* @6 L3 B5 X+ A+ D plot 100
" L% v5 P* N" x. Q1 k# K7 _( \9 l2 K) ^" i$ {8 p
set-current-plot-pen "lorenz"" A# @- R, l+ ?! P' B# I% ~
set-plot-pen-interval 100 / num-people
* ^1 y6 y2 A, l" ` plot 0
$ T+ Y' e" g& Y2 Q
' m2 d( W9 w2 m! L7 H: b let sorted-wealths sort [wealth] of turtles
& d! u* G2 _. Y) M/ S4 v3 { let total-wealth sum sorted-wealths
& x% ?- `! n8 {3 o let wealth-sum-so-far 0% {& _/ j- d. {' ?: N) j8 {
let index 0
" J) @# A, _$ l/ W1 M: l6 _3 k7 p, I let gini-index-reserve 0
; i/ |2 e' g3 M( o; [
2 y4 c6 k, l3 I repeat num-people [3 u: ~6 s0 r" S
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
; ^1 v- s5 Q4 ` plot (wealth-sum-so-far / total-wealth) * 100% P$ p! F' m$ B m7 ?' E
set index (index + 1)
7 o: X! z% Q, a# L& ]0 }0 H set gini-index-reserve
4 w$ A+ k$ O2 s gini-index-reserve +
7 L% K1 k/ P9 ^ (index / num-people) -
* O% N( L: Y% t4 M9 I" N' C (wealth-sum-so-far / total-wealth)
- p; j b, b0 i7 ]! o ]) m" e( }( b2 f9 C$ b- f
5 |8 Z0 l, y) `6 i! g
set-current-plot "Gini-Index v. Time"
+ }7 X! |9 P% ]2 n- w plot (gini-index-reserve / num-people) / area-of-equality-triangle8 s5 U n! ~3 v! U0 ?9 L5 q& K
end- R: ?( I- O& K* [
to-report area-of-equality-triangle
8 L1 p. V' [+ P$ ^6 a' Y report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
/ I1 A2 V0 O- \' B% ^. Send |