请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
5 z. X! | j9 `9 `& |3 B6 G x) Z+ R Aglobals$ @5 w9 @, p7 r$ E4 ~
[
0 i% }: z+ x( X; ^$ N* U max-grain 4 G: J. w/ w) ^9 q5 u, u
; c L: i) M8 ^, p0 S- J
]/ G, \, A% O- F0 c8 i1 k
+ [0 b, e' U$ Z( T) V( M! zpatches-own
6 J; D2 ]- w5 l[
2 p2 ] z5 k1 G) \# @9 F- p& E grain-here 2 [# v; |4 q' `
max-grain-here , `' t% c( T) R: Z5 u7 ~
]
- h1 X9 @" o* h6 F0 W, x" `1 r+ A" Q' z) I
turtles-own( @$ J9 d1 \. P1 L
[
# x. y6 N6 z+ ]$ L age
V7 d* j4 Z! t/ ?' r3 A( o5 G( N wealth
6 k3 z. ^5 I5 { life-expectancy / K& W- n l+ _, N8 E
metabolism
Z* |' l' ~5 ?6 K9 p vision9 V. A9 f" e" p/ s) _6 n' S
inherited
9 P ~( R0 L% r9 _5 g]
5 k* y0 k& C' X$ P7 M: Z. N7 ]4 e
! t$ l* ~" C# S( `8 O1 z0 e7 h0 Y' x& ~! G
to setup5 `6 r. F/ B( V
ca
! e' p$ r; u3 v. [: v set max-grain 50
0 x: t# [" U- H7 t. l: R setup-patches
$ b) w5 U2 X n6 z% a setup-turtles
& i; B* r: W' p* [/ s @ setup-plots( j! v* A8 ]9 N% k$ N5 j5 P
update-plots
% p$ Y1 n# P$ n$ ~end
* n/ K/ l2 t6 ^. k1 O/ J# cto setup-patches2 L7 u7 z/ l: z- ~! J+ Q. t6 k+ T
ask patches3 d+ _6 Y: ]0 X1 x% |
[ set max-grain-here 0: H$ I( b: y' S- d" x Y+ w7 ]9 C. K6 j
if (random-float 100.0) <= percent-best-land, E8 U' p8 t$ F7 U: I0 ]$ B
[ set max-grain-here max-grain' {" \$ g4 W1 e5 i5 r# W
set grain-here max-grain-here ] ]
* N' @% J: k1 } repeat 52 p- i1 @% E, b5 Z: z5 i! ~2 _
[ ask patches with [max-grain-here != 0]6 ?6 ?5 j' H: H% H8 Z% C' U( A
[ set grain-here max-grain-here ]3 U$ P) R4 C8 c2 I4 o3 S
diffuse grain-here 0.5 ]
" @2 X% W6 H' X( A1 g( [ repeat 10. i$ @6 w) G1 O+ M* f6 P
[ diffuse grain-here 0.5]
" x6 x% |! K& R ask patches
6 }' P7 ^8 f- w+ v! I. ]- ]0 F [ set grain-here floor grain-here
6 I" i5 V+ F( t& L+ i% H2 ] set max-grain-here grain-here ! S1 x" a2 q9 w& r9 ?
recolor-patch ]
0 f7 a; {4 D+ S1 i" p1 O; ?end9 f& R; u9 w: k- F" D
to recolor-patch
; _% T M( ^ t7 P9 U set pcolor scale-color sky grain-here 0 max-grain
: {- H- k* y& t. y3 P. S( pend
, K" ?* v, n0 X3 D8 ito setup-turtles+ [9 E, E2 D- s' R2 C# b
set-default-shape turtles "person"
: q+ s5 V; L0 x7 g9 r crt num-people6 F% n6 C0 f! ^4 c
[ move-to one-of patches . j# G: X' e) ~. O: K) m* g
set size 1.5 5 @! d+ s2 o( n8 p; j7 Y
set-initial-turtle-vars-age
7 q# \. j- s; A set-initial-turtle-vars-wealth$ T4 I7 |8 j( |, z+ y. Y9 J
set age random life-expectancy ], ^+ [5 M$ b* E1 D
recolor-turtles! m# N7 `/ b: K/ e8 \4 w
end
. c% U H- u% A0 Y# N
7 P8 N- w7 l* T* a* C/ ~1 yto set-initial-turtle-vars-age
1 I1 Q( [3 q* z7 u2 p7 ? let max-wealth max [wealth] of turtles
" E$ j1 O9 A1 T1 T 1 @' T; P3 l2 N
ifelse (wealth <= max-wealth / 3)" O# ]8 ?) j- }! }# M
[ set color red 0 J+ }4 V; ~) m0 h! r
set age 0/ M+ ^+ r$ @0 Z5 _3 ~$ K
face one-of neighbors4 $ g% V! l5 T2 S' u+ A
set life-expectancy life-expectancy-min +
& [2 W* U* H* \, n6 a# s; o random life-expectancy-max
9 Y: K! H8 B* x8 J1 r# d set metabolism random 1 + metabolism-low6 ]& \/ o7 V4 C) z1 b( K7 \
set wealth metabolism + random 30
0 s, D2 z% E' `( c! c1 Z set vision 1 + random max-vision- n7 z8 i$ W+ u6 r4 R
set wealth wealth + Wealth-inherited-low ]/ y( L2 N' Y2 N2 N
[ ifelse (wealth <= (max-wealth * 2 / 3))
0 l: k& {* V5 t& h* e! y/ T! O/ D \5 D [ set color yellow / Z' m3 P* C2 z
set age 0
" q) f, I, p/ f! K% y% P( w face one-of neighbors4
) T: q' z2 n% [. F$ e1 { set life-expectancy life-expectancy-min +$ I+ b9 s6 m& ]9 H3 J' L
random life-expectancy-max + 1, A+ k# o# }7 h# u7 _% t6 i. K
set metabolism 1 + random metabolism-mid
+ t" M5 o2 u! m4 z: p9 p, u$ q set wealth metabolism + random 30
: b4 O& ~" v a8 M7 m9 w set vision 3 + random max-vision" k) S4 I* U- {
set wealth wealth + Wealth-inherited-mid]8 } Y7 g2 `3 b. Z
[ set color green
6 p0 V# |! Z0 B+ Q set age 0# [1 U. _/ h* \* L4 ?
face one-of neighbors4
, t+ q9 [- A3 F( w set life-expectancy life-expectancy-min +: @$ l" Z$ O- }* ^1 W
random life-expectancy-max + 29 x4 Z! U: S/ a
set metabolism 2 + random metabolism-up% K& Z# X/ G X% e
set wealth metabolism + random 30
, i( h* O- i; s0 \( } set vision 3 + random max-vision
* T& G+ c5 @- S! M: S set wealth wealth + Wealth-inherited-up ] ] " O, O9 c* P2 p+ }# @
! @) P5 E! y+ D7 Bend5 R3 q7 K `" w2 m, a, U
to set-initial-turtle-vars-wealth
) h7 r$ `$ ]/ r. j( Z let max-wealth max [wealth] of turtles8 e# ~8 m6 \2 g6 G, F' G
set age 0/ N; R+ b% L0 K+ K+ D
face one-of neighbors4
. x9 b) c7 N, C/ ~0 ` set life-expectancy life-expectancy-min +
$ I+ b9 G* W5 P/ [7 ^9 Z' l7 t random life-expectancy-max # N. H4 L6 g, @9 p
set metabolism 1 + random metabolism-up
0 w- X N4 g3 ? e) C- | set wealth metabolism + random 30
/ F; B5 O' x8 U" ~8 \6 a: m' { set vision 1 + random max-vision : V5 C4 u, `5 Z. t9 z1 k5 e
end
) @% O& k: \/ q) Z ]) W! y1 A! |to redistribution
. J6 y3 A: P* Q4 Dlet max-wealth max [wealth] of turtles' D1 h9 ]3 n& v, j4 g3 U% U$ F
let min-wealth min [wealth] of turtles
6 [+ n0 k. t- u; |5 aif (wealth <= max-wealth / 3)& F6 v9 q& j/ X8 b3 ^
[set wealth wealth + Low-income-protection ]; f3 ?- b- k) H- R% q7 B0 ]6 s
end
$ |& A9 R/ f3 d3 u3 }, f% o( c! ~5 a
- V3 m" a* a% C0 \. Y! v& Sto recolor-turtles
6 X6 B7 e" o# {0 R2 ]: u let max-wealth max [wealth] of turtles& U' q8 G, `" h: R2 a0 {
ask turtles
. F, C5 Q3 S. h x1 V/ k; ] [ ifelse (wealth <= max-wealth / 3)( S& S% P# q/ @; p
[ set color red ]0 z5 m3 u0 R0 m) X3 ~ N+ I
[ ifelse (wealth <= (max-wealth * 2 / 3))
+ F& I9 g* n, L8 y* {0 @/ G% E [ set color yellow ]: z9 B5 F' h' V( ^
[ set color green ] ] ]
" X+ B4 ]) ^$ h8 ^ ask turtles [ifelse show-wealth?: W5 w* |9 a" ~
[ set label wealth ]
. H% n% Q7 t( c" ` [ set label "" ]]
2 W( t3 Q8 }1 b! Kend1 y2 K4 j5 g) z* h
& Q0 N! K9 T! [. j
to go1 s q* \. `2 @% o/ T- [
ask turtles7 Q* O* }: X7 [% U0 a; C$ ^. m
[ turn-towards-grain ] # d7 O K: l9 }& M+ U; |, D+ ~4 n* a
harvest
- n7 }* U- T1 ~$ e ask turtles
6 v4 v5 E( ^1 `, x; n [ move-eat-age-die ]
- T0 G. S0 H7 S" ?/ y p) i recolor-turtles3 n6 ]( t8 H& N+ [ r5 \
if ticks mod grain-growth-interval = 0
& d( C, ], h' V( a0 N" L7 y W [ ask patches [ grow-grain ] ]
9 L2 a% w5 x; g0 H# M+ Z2 B5 d: i . d# R$ s9 F$ P) j
if ticks mod 11 = 0
+ i) @3 O6 z9 o* s+ v0 O [ask turtles, H, C ^9 H" V' R7 K5 O5 y2 q, h
[ redistribution ]]
) ~6 H7 H6 W1 _8 l3 p' j, Y if ticks mod 5 = 0
% b2 e" e3 X+ L+ k, y1 X" y [ask turtles8 y- }5 Z- {; w; Y: n
[ visions ]]5 x# b: Y3 Z4 O$ W
tick
; n. M# X: B; ?' Y2 I update-plots
9 u: u$ E+ N2 z4 ~end0 k6 B# c4 }$ x4 x1 U, b
to visions
- ?/ y$ D% d/ W: a' |1 { set vision vision + 1 6 r' h! _; T, n8 L( g! | \
end
; B }9 ]9 N8 ], e3 C- s
) t5 \* L& R; A. d8 e7 x
- j& l: r" K3 k
1 H0 W8 i% e3 V+ D ato turn-towards-grain
! F- [1 d! R# ^! o$ |) P0 b% L set heading 01 w) A) h( H; G; S" b
let best-direction 0! y% A3 g) O+ k/ c1 t- j! j
let best-amount grain-ahead8 T, y* Q: e! v# K7 Q
set heading 90/ f; M4 d# r) k# K5 c% G
if (grain-ahead > best-amount)
9 {, f% A) h& e2 X [ set best-direction 90
# Z' s7 _% }3 y& T- {5 G7 b set best-amount grain-ahead ]
* a( z$ ]; S& ` set heading 1806 `, }8 F' R2 h5 Z% {
if (grain-ahead > best-amount), ]2 l1 `- F) ]2 E* `) c
[ set best-direction 180
- U9 P# X7 I# z7 [: E( W' [/ T7 y set best-amount grain-ahead ]
4 w0 ^* H* h. e set heading 270
4 B5 A) D# C. k' S& S if (grain-ahead > best-amount)
9 [# f- L7 }$ ~) W5 o* P9 @2 { [ set best-direction 270
* E6 l ~. {$ g( s set best-amount grain-ahead ]9 ]1 d7 z6 `. L" b1 d( l$ j: J
set heading best-direction* ~, a8 a% D J+ V
end9 h5 x( [) y* M5 }
1 Y: L, O- a" o9 D3 Z# a8 @: O9 Y! x: T A( I, V& [8 K
to-report grain-ahead
' j% _( {6 f" D$ h let total 0
* ^& K5 Z4 q% ^; T* u let how-far 1% h# [ O+ d) K8 P; W) M
repeat vision
! C2 c- w3 |- c' p+ M$ f [ set total total + [grain-here] of patch-ahead how-far/ S$ ^ I; }2 Y4 |, Y$ b1 S% n
set how-far how-far + 1 ]! d3 u$ C, I" ]/ e6 B
report total! T& ^2 D# @- V) ~+ V, K. y( v2 R
end# Q& B" G( H5 @6 L8 z9 J
5 T. v) z9 Q& D6 G& b' Rto grow-grain
6 m8 k, {0 j. C: W$ M7 Q' _8 Z6 x if (grain-here < max-grain-here)
. _/ ^. ~2 ]+ ~ t. ~ k# z [ set grain-here grain-here + num-grain-grown( c$ x, ]$ j2 P* e
if (grain-here > max-grain-here)
* c, C3 E2 D) m3 U [ set grain-here max-grain-here ]
$ n! ~4 E+ n5 m* ~0 Z0 V- O recolor-patch ]
& N7 |$ g8 [: {# Oend+ o% N o4 {( S3 L' R. r
to harvest# Z$ l# M) C/ y' e1 P+ y
ask turtles6 t% N! f" C) {) [
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]. W$ W& k! `, g B$ S0 F/ x
ask turtles
6 m' N+ y3 `) E0 R* s# E7 H [ set grain-here 0# u) z+ P0 E5 c( R
recolor-patch ]
# Q" V, b7 v& E$ `7 Z% C ' M/ f7 e8 A+ T* d7 [7 z
end3 N& A3 |" u( s4 r p
6 i* S2 k6 A9 h/ Tto move-eat-age-die 4 a9 N3 e6 M9 ^5 P) e) {3 j4 X
fd 10 y# h" L: |, \$ l7 U
set wealth (wealth - metabolism)
' K6 ^: k- z2 p2 I& H @. e set age (age + 1)
% J% P6 _, f# M9 ^! Q4 r$ f if (age >= life-expectancy). o0 b/ l0 s7 R
[ set-initial-turtle-vars-age ]
. T) k* t- o! F" k0 p if (wealth < 0)' v* s$ W7 @; i6 q4 A
[ set-initial-turtle-vars-wealth ]9 s2 k G* d& T8 m2 \" S! N& u
. C& K1 Y5 X) N1 I, `
end$ d2 Z [; ]3 T
& d0 y/ G" C9 E# ?0 N
7 i5 |! {/ w. |, oto setup-plots: ~. C& f' \. S- W$ v
set-current-plot "Class Plot"8 l- Z5 _! u) ?! B6 E
set-plot-y-range 0 num-people' A) Y. E' ^! W. A" u; y; L- l( ?
set-current-plot "Class Histogram"
' {5 C% ?0 [7 i$ R set-plot-y-range 0 num-people3 K) q6 Q( v4 ?) h
end* k- c4 u5 l5 X' l
7 i5 }: U0 s/ r* u& f. pto update-plots
4 Q9 [! n2 V+ o+ {5 e6 L0 T7 |9 F update-class-plot& b6 M: k. u* X" v. ~
update-class-histogram
1 c/ u2 b1 G6 I# D: F update-lorenz-and-gini-plots8 P1 z7 A! c T* g3 h& l
end
: m5 C, E* M. b+ V9 z1 t8 X; A$ |9 ^# X4 S4 R. K
to update-class-plot
2 U5 k' e. V. M3 C& [ set-current-plot "Class Plot"
7 N( x4 F6 m( k( ~. P set-current-plot-pen "low"' s; o4 d$ m2 Z9 c! S7 s
plot count turtles with [color = red]
" M7 Y+ o, Q5 Z% X, n4 W set-current-plot-pen "mid"
. p1 Z, h8 }# r% N4 r plot count turtles with [color = yellow] Y s0 C& X: @, r
set-current-plot-pen "up"! t: y, i9 R2 |/ n
plot count turtles with [color = green]
2 {4 ~4 R/ A: Dend7 J/ ?5 }) U r# h* m# P+ ~
3 o8 Q. }+ Q3 `" u! w7 bto update-class-histogram
8 ?) _5 V" m6 I' c7 S/ a" n set-current-plot "Class Histogram"7 @, F* | I. Q) _
plot-pen-reset T% U2 V; b7 h7 e
set-plot-pen-color red5 q- Z- m" @8 `5 W8 T
plot count turtles with [color = red]0 Q6 p8 f$ s, F6 x$ p5 C* h
set-plot-pen-color yellow
7 g2 `' s$ b, I. |5 l- @ f plot count turtles with [color = yellow]. W; p- t8 e5 U1 U7 d
set-plot-pen-color green
0 _ f0 z5 l* O6 k plot count turtles with [color = green]
% \+ x$ \, T# q3 _0 Q; [0 Cend
' O# X6 C Z2 x _9 M" Pto update-lorenz-and-gini-plots. o; |, d6 J% K1 k* ?% D
set-current-plot "Lorenz Curve"* H; v% g) C3 B/ e
clear-plot% A1 Y: @$ m- Q; o" j8 w
U- i0 r t/ x: h* B+ P
set-current-plot-pen "equal": w' X7 V) W {5 V1 u+ ]4 n
plot 0
4 b# x% D, P: N$ i- |9 @4 b7 v" N6 B plot 100' W$ O1 `9 ^" z9 l4 t, Z/ J, M
e* {1 D' o$ j1 Q2 ?. o
set-current-plot-pen "lorenz"
& a A' o" ^' L set-plot-pen-interval 100 / num-people
9 Q4 ?' o0 o5 v* Q- D6 u" z b plot 0' E$ T2 I& i' x
6 Q8 O$ H" u' }4 c4 i% ` let sorted-wealths sort [wealth] of turtles) w8 C+ J& Z, s1 ~2 ^
let total-wealth sum sorted-wealths0 G" o4 D! M# [& ~
let wealth-sum-so-far 0
- w7 f8 ^5 d ?8 i2 U let index 0) F, |7 @4 ^$ |9 L, r w
let gini-index-reserve 0
- @, |/ Q) r3 R% c
" m0 l" S* C! R, m" m repeat num-people [+ Y- U# R3 |. }
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
, R2 J! P+ V/ v `! }$ H. V plot (wealth-sum-so-far / total-wealth) * 100
# Y* N7 l, X" J set index (index + 1)3 v( N' n! H" b% {" Y7 O( W
set gini-index-reserve
- }4 `& i6 {0 L0 m gini-index-reserve +1 p8 N1 Y1 d' h$ x& ]+ C' x
(index / num-people) -
. Z# Z; W+ j* b. K. e: } (wealth-sum-so-far / total-wealth)
: @6 K" F" t# M+ T7 W ]
4 s& B& N ]2 e" ~- k3 o
8 r% b" _) Y0 W; w( V set-current-plot "Gini-Index v. Time"
! p* K/ `* ]( c5 E; S* P% L plot (gini-index-reserve / num-people) / area-of-equality-triangle
. h! q2 w' \/ p& O Wend
/ i0 U: {3 M& bto-report area-of-equality-triangle
4 w6 p' J: X/ ^& k" Q5 |' W report (num-people * (num-people - 1) / 2) / (num-people ^ 2)( U* [/ u) L8 x9 t( o
end |