请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
) @7 t, B6 H- iglobals" e) k3 x; w3 o/ H! ^7 e K. P: H
[
: H1 _) Y* P M2 G max-grain
$ E" }5 Z5 R$ e6 t
: v: Z' M+ H1 `. ^]
2 E( o" W2 C5 h5 y) O- ^& i! Z6 t. A; O, M" R
patches-own4 z' h$ S3 R3 G, [
[3 U1 [; H7 i( X
grain-here # Q" M' M; a$ `, e
max-grain-here
% p! I$ I- ?. n" a]5 W& f' {1 x0 c0 [
$ t" M0 R: Q- Z! f3 A0 X
turtles-own# J6 T5 s9 A! X9 v# L
[5 U6 \' O7 P% G: U
age % @5 X$ z9 T8 p
wealth
: D& `- a/ J. X1 q% C4 n0 }" ` life-expectancy 8 x) H4 r* N& }! u* {
metabolism
- c& P5 V3 j5 Z( F vision
% m$ R( _ L; _) u8 n0 o inherited
& D8 z4 K* J. C. D]1 u7 F2 {* `! L* h8 H/ n: \
. [2 U/ ?9 F, s7 Z `1 x+ x3 g7 r
# {. [+ S4 x( g2 L3 r$ G
to setup z8 Z' j! p4 t. `0 G
ca. V$ m! H$ i1 a+ Z
set max-grain 50
# A' w# E& g+ d& { e P setup-patches
7 a, J! E: s# l setup-turtles
* M! E: ~7 @+ Y! t+ p# v0 @% ^7 o9 ` setup-plots- W% ]$ u! ?& M# O4 S
update-plots
% b/ o5 D$ F( M$ j/ L3 rend( v; c2 n; G8 I; j! ]1 d+ z
to setup-patches+ p/ d0 T# _& P/ p4 I# Q4 o n
ask patches1 }9 j) U2 C' Y" e0 H
[ set max-grain-here 0
N% F- k' N5 x# A0 z7 B! K" N, a if (random-float 100.0) <= percent-best-land6 G, b' A6 `7 t# {/ m
[ set max-grain-here max-grain
5 l, m- A! f2 E) t set grain-here max-grain-here ] ]$ C4 ?+ S i3 B5 C
repeat 5
3 `! r9 W4 ]/ p- p! |4 M [ ask patches with [max-grain-here != 0]! R$ X/ ~. E [9 w9 ~8 I7 m. V- b
[ set grain-here max-grain-here ], _; _% a1 {2 L
diffuse grain-here 0.5 ]! n% c( P4 s# V5 w
repeat 10
* H4 ^1 c2 x, V# P' V P4 G [ diffuse grain-here 0.5] : u& c. t& C/ u9 k4 y
ask patches
3 Q5 P+ x8 |' |, s+ \ w [ set grain-here floor grain-here 3 A! R2 U. V! V: k% U% Q d
set max-grain-here grain-here 5 _+ q. ] G5 @! y& G; {0 q
recolor-patch ]. S& }$ Z; y: F9 q3 W- F# v
end
8 \% h. z& w6 p- q- S8 \- Ato recolor-patch : F- K6 D; W# V: n
set pcolor scale-color sky grain-here 0 max-grain
5 v5 E6 j* e3 k- q4 M! t! I6 Rend L' h4 W' U% W) q0 U* v$ \7 ?
to setup-turtles
2 B: i- R/ b8 P8 |; C& D set-default-shape turtles "person"3 u, Z/ H6 E9 k4 [
crt num-people
# b! i) f+ g+ S: e [ move-to one-of patches
/ o" g5 H* A. r! L7 } set size 1.5 5 J0 n8 ]% d$ C. |; K8 C
set-initial-turtle-vars-age
( f; O. V. L/ ~ set-initial-turtle-vars-wealth
8 j- S: ~$ L/ ~2 f; E$ O set age random life-expectancy ]9 T6 K" c* W# J0 o. G7 p" E
recolor-turtles+ ]- W' f9 M5 Z* [
end
% n. j+ Y& \; h5 k: X7 n' I6 ^9 z" v9 q0 [! x$ k$ v# }$ }+ R5 {
to set-initial-turtle-vars-age
- }; d) A" M: [! p: B let max-wealth max [wealth] of turtles
2 g: F' |& s- N! F' { 2 f7 P0 ^4 V8 r" b2 z0 H4 I8 `; p9 |8 y9 U
ifelse (wealth <= max-wealth / 3)
5 N! \( T) _. Y8 u4 z3 D: v [ set color red ) ~6 }! \! I$ W7 ?
set age 0
m/ h, {+ e3 V3 D, r face one-of neighbors4 Q( X7 \% [' z# y z# m, @
set life-expectancy life-expectancy-min +
* H' _! |) E1 t$ H1 Z5 |: } random life-expectancy-max / x b* P+ o$ g* S. q! H
set metabolism random 1 + metabolism-low
9 Y; ]) P q8 y5 C. W3 G set wealth metabolism + random 30+ n$ }( a* z" P% E0 D2 K
set vision 1 + random max-vision
6 m5 s+ i6 i$ V9 m, S6 i- u5 q, { set wealth wealth + Wealth-inherited-low ]
/ `& X7 y! u4 k) \/ D7 [ [ ifelse (wealth <= (max-wealth * 2 / 3))% b' I: x4 I J
[ set color yellow
1 Y# u1 T# _$ I& r# i5 r/ I) ^ set age 05 n1 T# D7 ]+ C0 T* k8 K2 }2 n. t+ G
face one-of neighbors4
8 P% l8 h& M" R2 R; W set life-expectancy life-expectancy-min +
/ ^3 Z& A2 ^( l6 A, w random life-expectancy-max + 1/ B1 L! k, O0 M' i0 j7 v! b3 b
set metabolism 1 + random metabolism-mid
5 R$ h% [4 C# V# B3 D set wealth metabolism + random 302 w- ]$ F( q$ s; p v* r' o
set vision 3 + random max-vision* C! x/ M% O( b# f) J/ w# w
set wealth wealth + Wealth-inherited-mid]
( W$ S. A8 R5 q _/ P [ set color green
3 ^7 P+ U" W! d/ a# x set age 0
$ b K( S7 w+ N; l) ^' P+ o- y face one-of neighbors4
9 H. |$ U! y# t7 o1 L+ S7 H set life-expectancy life-expectancy-min +
2 x% c- z+ ~! Y/ m; h random life-expectancy-max + 2% S" x7 h- W( j
set metabolism 2 + random metabolism-up+ x" J; B0 i' ~; a4 H4 U
set wealth metabolism + random 30
0 L {4 s& {: o7 ~4 U& \ set vision 3 + random max-vision4 `9 _0 ~5 p! d
set wealth wealth + Wealth-inherited-up ] ]
9 Z# f0 |. ~; l5 g- l1 V q0 V0 M % i6 i, W ] Q0 R2 v" c" ]3 E/ g( R
end8 b- X% h. D4 G; {
to set-initial-turtle-vars-wealth7 b: S& |' L9 M5 `6 i- Y1 ?" d! B7 I
let max-wealth max [wealth] of turtles
9 ^+ c3 q/ h6 L. @) z set age 0
/ e @6 {6 ^( @. O3 q, k+ w face one-of neighbors4
' v1 a/ E0 l& z set life-expectancy life-expectancy-min +
" ?) i$ @1 `5 M random life-expectancy-max
: d2 K9 ]+ g% f9 R3 W set metabolism 1 + random metabolism-up
9 ^4 H0 E; W; H1 t0 ?1 |3 E. u set wealth metabolism + random 30& b0 X4 z6 } t
set vision 1 + random max-vision
9 ]; }2 P% Z7 i/ t0 j# n" W y. Jend! ^7 O" I& s9 g0 }0 V. W
to redistribution7 p7 d- s8 M; B/ o( u* G: P' J5 R
let max-wealth max [wealth] of turtles3 e, a9 u8 u2 i+ P, c% M" T- g
let min-wealth min [wealth] of turtles+ Y7 ]2 d8 e& M5 v
if (wealth <= max-wealth / 3)( n2 V6 N7 Y' A# ?& l
[set wealth wealth + Low-income-protection ]
3 x: u" q' @5 V( B+ zend
6 g- N! Z- A- P; s. k( P# ~8 x# k! G 8 {& e+ X5 k% L$ ?" Q* M
to recolor-turtles$ D7 A6 A( x6 [, ~
let max-wealth max [wealth] of turtles
$ d1 i8 v' ?* n5 R; W ask turtles1 y+ ]$ p8 \) c) G
[ ifelse (wealth <= max-wealth / 3)
6 k3 [% D& |, T/ l' Q [ set color red ]$ v) m! T* S# D6 D" ]2 ~7 N
[ ifelse (wealth <= (max-wealth * 2 / 3))
8 d1 ]! r( V$ P- {2 M# Q) I [ set color yellow ]. ^7 f# W, q9 F# @7 a
[ set color green ] ] ]
1 Z3 }3 i0 s6 v& d u ask turtles [ifelse show-wealth?
8 {* G# I" p7 m [ set label wealth ]
% f6 L0 G% G0 \4 j% W [ set label "" ]]
- X% z2 F& [$ S2 \7 P$ @: yend
+ {6 |+ u( k8 o- S1 P E6 l1 w5 \% i z8 y7 J- p1 F& [
to go7 m: X9 p0 g% k) }# i5 v
ask turtles
2 [# `% m; s0 ?7 t S1 ?$ u, u [ turn-towards-grain ]
t0 Z/ o- T! C1 G' U, n harvest- L2 Z6 {3 @/ Y9 v! y K
ask turtles$ G i* [) }3 T0 S$ O' t
[ move-eat-age-die ]7 Y0 p. Y/ H# {7 J" O' m
recolor-turtles8 s4 U- G2 m* X# l9 M
if ticks mod grain-growth-interval = 0* w4 P! b! \7 U/ h
[ ask patches [ grow-grain ] ]
/ K7 P- I: f8 |) H" d" U4 Z/ n
' |" k- {) l" ]4 }6 F2 p if ticks mod 11 = 0
. Q) w2 I8 \$ a4 Q- a [ask turtles; O; [. O4 Z! `$ u; A+ m2 w/ k6 D; D
[ redistribution ]]
1 t6 y) J( S, Q- H' w6 ] if ticks mod 5 = 0
+ J( Y8 v% v' i [ask turtles/ G" i( v% Y3 q, L j
[ visions ]]
* \% U' `9 j7 j+ Z) f& H# Q1 E tick
) V t5 S; ?$ |9 ` update-plots2 ]! P$ d/ R# D* m$ N
end
3 s! a' C, g3 T# ~" uto visions
, H- P5 k" l, E4 L+ x' s) N set vision vision + 1 . Z- H# v# R, C# w$ L( k
end
8 L* U# T# F; w9 q5 W: v. ~: y* J7 f4 B: v6 e( L
+ c, Y( v6 B; D" g
9 \+ M) i: b3 ~) [to turn-towards-grain b6 l, ?# f s; q
set heading 0* ]3 ]: j, {2 N; \( {
let best-direction 02 w: h. b4 e8 c$ z7 g* H
let best-amount grain-ahead L2 J- U1 b0 R
set heading 90 F1 g0 m1 Z6 N3 U0 f( H2 Y9 E
if (grain-ahead > best-amount): ^) ?& b# c ?* F0 U
[ set best-direction 90
|! R" t+ w0 e) N7 L set best-amount grain-ahead ]
! u0 V( S: J( U3 q set heading 1803 C l- h$ w) B# X% b2 M
if (grain-ahead > best-amount)9 O, H; m$ w* Z7 ^# K
[ set best-direction 1808 R6 a& w" p' R- C8 d
set best-amount grain-ahead ] M4 S! Q& `% n' k
set heading 270
- C6 W1 r) S) s0 Y if (grain-ahead > best-amount)
# r' V% \2 j; l3 N% L; p/ ] [ set best-direction 270
# m4 t+ ]4 y( Z2 o set best-amount grain-ahead ]7 K& b- [8 O2 D$ H
set heading best-direction
0 p& k ?. P7 j% kend
' J& p2 r. E5 @8 N9 c4 ]
/ t) Q: a- n6 x1 e( n9 ~2 N. {1 R! `5 |/ o9 g6 b
to-report grain-ahead ' U- ?) t8 F# t
let total 0
& O3 I2 f+ G4 I. H- P let how-far 1
' N( ~: {8 [: p* v# W repeat vision
- m. v7 {4 Y; b; y3 W' r+ K [ set total total + [grain-here] of patch-ahead how-far% k$ E- s, J) |0 ~4 g$ s% [
set how-far how-far + 1 ]
4 o2 I( a/ W( o- f5 | report total
1 S6 E3 |8 u4 k# Y% Aend% E! {* W) w7 p) v$ p' e
, G5 b$ q2 s. u& b; t; Q# ^
to grow-grain : _: k9 |* X1 T. D& [$ W0 C
if (grain-here < max-grain-here)
( l) ^1 F7 A$ G: i5 m1 e [ set grain-here grain-here + num-grain-grown4 k' O3 o6 S* t x
if (grain-here > max-grain-here)
9 B+ G* w$ L8 B2 D% Y; F/ y4 v [ set grain-here max-grain-here ]8 _% g& V+ V, V, a# ^5 F
recolor-patch ]4 O( o" d+ r( i# M4 H
end
1 ~6 U+ ^) Y* ]7 I* _/ s, ^to harvest
* G, I# @; Y4 o5 z ask turtles/ a9 K$ D# E) u2 d! \- Y/ s
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]1 d! e! O) ?6 w8 w& ~
ask turtles
& a7 Y/ G9 w+ A* [' I8 U$ Z) @ [ set grain-here 0+ j/ p- \8 t Q$ F
recolor-patch ]
: \% [# {' E% u" ~1 A" v 9 m) c7 i3 g3 d; W o
end
+ {, `9 |8 e, L# u- I$ w
3 d, @) K2 f; X0 \/ Oto move-eat-age-die ! P5 Y; \& v7 U) V4 Y# O/ w
fd 1
# o6 B' ^# s( P5 u9 Z set wealth (wealth - metabolism)0 {0 Q D: S, G. ~- B
set age (age + 1)
/ t& l% y/ H9 [! _$ \ if (age >= life-expectancy)% d; I8 u0 j0 g* i* c, F# l
[ set-initial-turtle-vars-age ]
* B5 z6 n: l' \7 ^& b if (wealth < 0)' P2 }+ G8 r, s, E
[ set-initial-turtle-vars-wealth ]
0 x) a: D! F4 D. ^& q( D
( v( |! G1 }! Wend
8 u, H) M# O2 O `3 s' W5 x$ x0 `5 C; s, D& F
" K/ n1 Z( p! h# W3 Ato setup-plots
, T6 ^3 r& F g- i* }$ m set-current-plot "Class Plot": o5 D4 R* ` o' K4 A0 |) O ]
set-plot-y-range 0 num-people" k( E; W5 @+ A0 |$ C( }
set-current-plot "Class Histogram". R) S* Q M2 ~
set-plot-y-range 0 num-people
1 H* g" b# s, R+ fend
0 a! U4 v- N* s& r3 I: V3 C$ G0 s: T+ h5 S, V' Q$ L' K) s5 [6 |
to update-plots8 u' j+ \. P1 } ~
update-class-plot
/ D. }1 I# r/ O update-class-histogram4 k6 H# C' E3 Z( G
update-lorenz-and-gini-plots8 f( g( a: C. |. f f* O
end; p, w& X5 }; r; G1 n2 [
( U3 I: B$ F* A' l" }0 }! p: a
to update-class-plot8 S6 q$ h4 i4 g5 }, f5 u( N7 D
set-current-plot "Class Plot"
: L) a& ?7 p$ m* i, ]6 `/ a4 n set-current-plot-pen "low"
8 @& {& s% y. G0 C plot count turtles with [color = red]
- f/ \ _8 }3 ^, q) i0 V& l set-current-plot-pen "mid"
}; C8 t+ D8 B3 a$ s) c& P+ X2 c plot count turtles with [color = yellow]
& l& x& I- h# ^: k set-current-plot-pen "up"
7 x4 q, r9 V. N2 l6 n8 }' ? plot count turtles with [color = green]
, K; s% D% F+ gend& I2 d, i- o8 G" \( [
$ \8 x g# V$ H8 d, p, ] Pto update-class-histogram
$ U1 K- |& ?7 F5 m set-current-plot "Class Histogram". U4 j/ g" f# ]* M; {% l
plot-pen-reset
1 P5 M ^% \. e: L0 b set-plot-pen-color red: t/ R# |* [0 D) _
plot count turtles with [color = red]: {& Y. [8 Y( b8 Y$ O( A
set-plot-pen-color yellow
9 h7 x! B% X2 F- [9 S0 C- M6 Z plot count turtles with [color = yellow]3 R! k2 {: H6 M: \$ C
set-plot-pen-color green
; f2 s" C) P" a# M: V plot count turtles with [color = green]
9 h$ f7 i) c. G. eend
% p0 V H5 y1 h5 Z+ }3 o5 M# gto update-lorenz-and-gini-plots, D, g3 E( {3 @* g1 H+ X/ g
set-current-plot "Lorenz Curve"8 f* i9 v) Q2 A3 J- {1 t7 i
clear-plot
% Q4 {! \' m5 E4 J- ~1 A4 _' d* ~! J. {: [6 y5 O' l
set-current-plot-pen "equal" ^/ f- n1 ~* O
plot 0! d* i3 ^! _: G. n" W
plot 100
: z, T j; a( I8 Q
- o& m1 A4 T- Z# M" g! I9 T set-current-plot-pen "lorenz"
2 X) Y g/ Q9 G- j! A set-plot-pen-interval 100 / num-people
" j3 a4 c8 D4 V* @& W. u6 b* g* | plot 0
* a7 t$ T9 G; i- e. u' j' h3 o
% f4 w/ F: O5 {+ X+ {* J1 c/ ~+ i let sorted-wealths sort [wealth] of turtles
+ h1 Y7 a h3 _& V! ?; |. ^8 s& Q let total-wealth sum sorted-wealths
1 p+ P2 s% W/ U b% M: D$ S" X6 D let wealth-sum-so-far 0
2 W7 d3 I, U* s0 L) C let index 0! _" [1 |9 S2 Z0 h& M! O
let gini-index-reserve 0+ v$ n. f# C% r* Z
$ k' L1 w& \: A3 v
repeat num-people [
& h* j5 I' J) k0 |- X" T! w set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)8 R) }% g5 [" E' G7 A! T* ?8 c
plot (wealth-sum-so-far / total-wealth) * 100
5 V3 Y& B4 w) g& r9 V/ o set index (index + 1)
9 y( o: f2 S( m1 P& K, A0 v set gini-index-reserve4 x1 K0 ?) E& ^' R
gini-index-reserve +" C# M& h' N# K' q
(index / num-people) -
1 J4 Q2 h" r( T b (wealth-sum-so-far / total-wealth)
9 Q& U( ?5 D/ d* K7 x ]" a' w4 {' p. S- F% O
# h! W! {4 {2 `+ c" `1 N
set-current-plot "Gini-Index v. Time"
: g& u* v# P1 }/ ?% O. M plot (gini-index-reserve / num-people) / area-of-equality-triangle
0 B L8 c6 g: Mend
2 F' K7 J- G/ x$ Z0 u% B. Lto-report area-of-equality-triangle2 F! h4 A+ C. ?" W% ]
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)6 }8 X2 y$ i' n) C& A
end |